1. Деформация тел. Сила упругости. Закон Гука

1.

Деформация тел. Сила упругости. Закон Гука

Известно, что на все тела, находящиеся на Земле, действует сила тяжести, обусловленная гравитацией.

Какие ещё силы могут возникнуть? Рассмотрим несколько примеров.

(1). На яблоко в тарелке действует сила притяжения Земли. Фрукт не проваливается сквозь тарелку, а находится в покое.

Значит, существует сила, которая уравновешивает силу тяжести.

(2). Рассмотрим тело, подвешенное на нити. Сила тяжести будет направлена вниз.

Тело не может упасть, потому что силу тяжести компенсирует сила натяжения нити.

(3). Проведём опыт.

Позволим гире опуститься на середину доски на опорах.

Сила тяжести гири воздействует на доску и оказывает деформацию изгиба — заставляет сгибаться. Свойство упругости доски вызывает противоположную силу — силу реакции опоры — для того, чтобы вернуться в исходное, недеформированное состояние. Обе силы направлены вдоль одной прямой через центр масс гири, но направления противоположны, поэтому сумма сил равна нулю.

Под весом гири доска прогнулась — изменила свою форму.

Деформацией тела называют изменение размера или формы тела под воздействием внешних сил.

При изменении формы и размера под воздействием деформирующих сил каждое упругое тело пытается вернуться в начальное состояние.

Сила упругости — сила, которая возникает при деформации тела и стремится вернуть его

в исходное состояние.

Сила упругости — векторная величина, обозначается (vec{F})(_{упр}).

Чем сильнее давит тело на опору, тем больше деформация и возникающая в ответ на деформацию сила упругости. Деформация опоры прекращается в тот момент, когда действующие по вертикали силы уравновесят друг друга (сила упругости равна силе тяжести).

Если исчезнет деформирующая сила, то исчезнет и сила упругости.

В зависимости от приложенных сил различают виды деформации:

  • деформация растяжения и сжатия;

  • деформация сдвига;

  • деформация изгиба;

  • деформация кручения.

Деформация называется упругой в случае, если тело полностью восстановило свою форму и объём после прекращения действия деформирующей силы.

(4). Рассмотрим силы, действующие в опыте с гирей, подвешенной на нити.

Синей стрелкой обозначен вектор силы тяжести (vec{F_2}), направленной к центру Земли (вертикально вниз). Силе тяжести противодействует сила упругости нити (vec{F_1}), называемая силой натяжения нити. Она обозначена красной стрелкой, направленной вверх.

Гиря не движется, значит, силы компенсируют друг друга, сила тяжести равна силе упругости: (vec{F_1}-vec{F_2}=0); но направлена противоположно.

Подвесом называют нить, на которую подвешивается тело. Обычно имеют в виду нерастяжимую прочную нить.

Подвесом может быть упругое тело: пружина, резина. Значит, оно может растягиваться (деформироваться) под действием силы тяжести тела. При растяжении длина подвеса изменяется на некоторую величину, которую называют удлинением: (Delta l=l-l_0), где (l_0) — начальная длина нити, а (l) — конечная длина.

Закон Гука: изменение длины тела при растяжении (или сжатии) прямо пропорционально модулю силы упругости

F упр = k ⋅ Δ l , где

(Δl) — удлинение тела (изменение его длины),

(k) — коэффициент пропорциональности, который называется жёсткостью (пружины), которая зависит от материала.

Закон Гука работает только в случае, если деформация была упругая.

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

Деформация является деформацией, пока сила, вызывающая эту деформацию, не приведет к разрушению.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения
  • Деформация сжатия
  • Деформация сдвига
  • Деформация при кручении
  • Деформация при изгибе

Сила упругости: Закон Гука

Давайте займемся баскетболом. Начнем набивать мяч о пол, он будет чудесно отскакивать. Этот удар можно назвать упругим. Если при ударе деформации не будет совсем, то он будет называться абсолютно упругим.

Если вы перепутали мяч и взяли пластилиновый, он деформируется при ударе и не оттолкнется от пола. Такой удар будет называться абсолютно упругим.

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не стремится вернуться в исходное состояние).

При деформации возникает сила упругости- это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, про­порциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Закон Гука

Fупр = kx

Fупр — сила упругости [Н]

k — коэффициент жесткости [Н/м]

х — изменение длины (деформация) [м]

Важно раз

Изменение длины может обозначаться по-разному в различных источниках. Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Важно два

Поскольку сила упругости направлена против направления силы, с которой это тело деформируется (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.

Задачка

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при поднятии вверх рыбы весом 300 г?

Решение:

Сначала определим силу, которая возникает, когда мы что-то поднимаем. Это, конечно, сила тяжести. Не забываем массу представить в единицах СИ — килограммах.

СИ — международная система единиц.

«Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

m = 300 г = 0,3 кг

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

F = mg = 0,3*10 = 3 Н.

Тогда из Закона Гука выразим модуль удлинения лески:

F = kx

Выражаем модуль удлинения:

x = F/k

Подставим числа, жесткость лески при этом выражаем в Ньютонах:

x=3/(0,3 * 1000)=0,01 м = 1 см

Ответ: удлинение лески равно 1 см.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости- это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

1/k = 1/k₁ + 1/k₂ + … + 1/k_i

k — общая жесткость системы [Н/м] k1, k2, …, — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

В случае когда пружины соединены параллельно величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

k = k₁ + k₂ + … + k_i

k — общая жесткость системы [Н/м] k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Задачка

Какова жесткость системы из двух пружин, жесткости которых k₁ = 100 Н/м, k₂ = 200 Н/м, соединенных: а) параллельно; б) последовательно?

Решение:

а) Рассмотрим параллельное соединение пружин.

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

При последовательном соединении общая жесткость двух пружин

1/k = 1/k₁ + 1/k₂ + … + 1/k

1/k = 1/100 + 1/200 = 0,01 + 0,005 = 0,015

k = 1000/15 = 200/3 ≃ 66,7 Н/м

Очень-очень важно!

Не забудь при расчете жесткости при последовательном соединении в конце перевернуть дробь.

График зависимости силы упругости от жесткости

Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.

Задачка 1

Определите по графику коэффициент жесткости тела.

Решение:

Из Закона Гука выразим коэффициент жесткости тела:

F = kx

k = F/x

Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.

Например, возьмем вот эту точку.

В ней удлинение равно 2 см, а сила упругости 2 Н.

Переведем сантиметры в метры: 2 см = 0,02 м И подставим в формулу: k = F/x = 2/0,02 = 100 Н/м

Ответ:жесткость пружины равна 100 Н/м

Задачка 2

На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.

Решение:

Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.

Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.

k = F/x

Значит жесткость стальной проволоки больше.

Ответ: жесткость стальной проволоки больше медной.

Сила упругости. Закон Гука

Любое тело, когда его деформируют и оказывают внешнее воздействие, сопротивляется и стремиться восстановить прежние форму и размеры. Это происходит по причине электромагнитного взаимодействия в теле на молекулярном уровне.

Деформация — изменение положения частиц тела друг относительно друга. Результат деформации — изменение межатомных расстояний и перегруппировка блоков атомов.

Определение. Что такое сила упругости?

Сила упругости — сила, возникающая при деформации в теле и стремящаяся вернуть тело в начальное состояние.

Рассмотрим простейшие деформации — растяжение и сжатие

Сила упругости

На рисунке показано, как действует сила упругости, когда мы сжимаем или растягиваем стержень.

Закон Гука

Для малых деформаций x ≪ l справедлив закон Гука.

Закон Гука

Деформация, возникающая в упругом теле, пропорциональна приложенной к телу силе.

F у п р = — k x

Здесь k — коэффициент пропорциональности, называемый жесткостью. Единица измерения жесткости системе СИ Ньютон на метр. Жесткость зависит от материала тела, его формы и размеров.

Знак минус показывает, что сила упругости противодействует внешней силе и стремится вернуть тело в первоначальное состояние.

Существуют и другие формы записи закона Гука. Относительной деформацией тела называется отношение ε = x l . Напряжением в теле называется отношение σ = — F у п р S . Здесь S — площадь поперечного сечения деформированного тела. Вторая формулировка закона Гука: относительная деформация пропорциональна напряжению.

ε = σ E .

Здесь E — так называемый модуль Юнга, который не зависит от формы и размеров тела, а зависит только от свойств материала. Значение модуля Юнга для различных материалов широко варьируется. Например, для стали E ≈ 2 · 10 11 Н м 2 , а для резины E ≈ 2 · 10 6 Н м 2

Закон Гука можно обобщить для случая сложных деформаций. Рассмотрим деформацию изгиба стержня. При такой деформации изгиба сила упругости пропорциональна прогибу стержня.

Закон Гука

Концы стержня лежат на двух опорах, которые действуют на тело с силой N → , называемой силой нормальной реакции опоры. Почему нормальной? Потому что эта сила направлена перпендикулярно (нормально) поверхности соприкосновения.

Если стержень лежит на столе, сила нормальной реакции опоры направлена вертикально вверх, противоположно силе тяжести, которую она уравновешивает.

Вес тела — это сила, с которой оно действует на опору.

Силу упругости часто рассматривают в контексте растяжения или сжатия пружины. Это распространенный пример, который часто встречается не только в теории, но и на практике. Пружины используются для измерения величины сил. Прибор, предназначенный для этого — динамаметр.

Динамометр — пружина, растяжение которой проградуированно в единицах силы. Характерное свойство пружин заключается в том, что закон Гука для них применим при достаточно большом изменении длины.

При сжатии и растяжении пружины действует закон Гука, возникают упругие силы, пропорциональные изменению длины пружины и ее жесткости (коэффициента k ).

В отличие от пружин стержни и проволоки подчиняются закону Гука в очень узких пределах. Так, при относительной дефомации больше 1% в материале возникают необратимые именения — текучесть и разрушения.

Деформация тел. Сила упругости. Закон Гука

План-конспект урока по теме «Деформация тел. Сила упругости. Закон Гука»

Дата:

Тема: «Деформация тел. Сила упругости. Закон Гука»

Цели:

Образовательная: Обеспечить и сформировать осознанное усвоение знаний о деформации тел, силе упругости и законе Гука.

Развивающая: Продолжить развитие навыков самостоятельной деятельности, навыков работы в группах.

Воспитательная: Формировать познавательный интерес к новым знаниям; воспитывать дисциплину поведения.

Тип урока: урок усвоения новых знаний

Оборудование и источники информации:

  1. Исаченкова, Л. А. Физика : учеб. для 9 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. Минск : Народная асвета, 2015

  2. Карточки с заданиями.

Структура урока:

  1. Организационный момент(5 мин)

  2. Актуализация опорных знаний(5мин)

  3. Изучение нового материала (15 мин)

  4. Физкультминутка (1 мин)

  5. Закрепление знаний (14 мин)

  6. Итоги урока(5 мин)

Содержание урока

  1. Организационный момент

Здравствуйте, садитесь! (Проверка присутствующих). Сегодня на уроке мы должны разобраться с деформацией тел, силой упругости и законом Гука. А это значит, что Тема урока: «Деформация тел. Сила упругости. Закон Гука».

  1. Актуализация опорных знаний

  1. Ответ: Пружина растянулась. Произошла деформация пружины.

  2. Ответ: Сила, возникающая при деформации тела называется силой упругости. Направлена она в сторону, противоположную направлению смещения частиц тела при деформации.

  3. Ответ: Чем больше сила, тем больше деформация. Подействовали на пружину большей силой (увеличивали количество грузов) и растяжение пружины стало больше.

  1. Изучение нового материала

Английский естествоиспытатель Роберт Гук (рис. 145) родился во Фре- шуотере, графство Айл-оф-Уайт (остров Уайт), в семье священника местной церкви. В 1653 году поступил в Крайст- Чёрч-колледж Оксфордского университета, где впоследствии стал ассистентом Р. Бойля. В 1662 году был назначен куратором экспериментов при только что основанном Королевском обществе; член Лондонского королевского общества с 1663 года. С 1665 года — профессор Лондонского университета, в 1677-1683 гг. — секретарь Лондонского Королевского общества.

Разносторонний учёный и изобретатель, Гук затронул в своих работах многие разделы естествознания. В 1659 году построил воздушный насос, совместно с X. Гюйгенсом установил (около 1660 г.) постоянные точки термометра — таяния льда и кипения воды. Усовершенствовал барометр, зеркальный телескоп, применил зрительную трубу для измерения углов, сконструировал прибор для измерения силы ветра, машину для деления круга и другие приборы.

Большое значение имело открытие Гуком в 1660 году закона пропорциональности между силой, приложенной к упругому телу, и его деформацией (закон Гука).

Гук высказал идею, что все небесные тела тяготеют друг к другу, и дал общую картину движения планет. Он предвосхитил закон всемирного тяготения И. Ньютона; в 1679 году высказал мнение, что если сила притяжения обратно пропорциональна квадрату расстояния, то планета должна двигаться по эллипсу. Идею об универсальной силе тяготения Гук имел с середины 1660 годов, затем, ещё в недостаточно определённой форме, он выразил её в 1674 году в трактате «Попытка доказательства движения Земли», но уже в письме 6 января 1680 года Ньютону Гук впервые ясно формулирует закон всемирного тяготения и предлагает Ньютону, как математически более компетентному исследователю, строго математически обосновать его, показав связь с первым законом Кеплера для некруговых орбит (вполне вероятно, уже имея приближённое решение). С этого письма, насколько сейчас известно, начинается документальная история закона всемирного тяготения. Ньютону также принадлежат некоторые работы по тяготению, предшествовавшие результатам Гука, однако большинство самых важных результатов, о которых позднее вспоминал Ньютон, во всяком случае, не было им никому сообщено.

С помощью усовершенствованного им микроскопа Гук наблюдал структуру растений и дал чёткий рисунок, впервые показавший клеточное строение пробки (термин «клетка» был введён Гуком). В своей работе «Микрография» (Micrographia, 1665) он описал клетки бузины, укропа, моркови, привел изображения весьма мелких объектов, таких как глаз мухи, комара и его личинки, детально описал клеточное строение пробки, крыла пчелы, плесени, мха. В этой же работе Гук изложил свою теорию цветов, объяснил окраску тонких слоёв отражением света от их верхней и нижней границ.

Гук высказывал мысли об изменении земной поверхности, которое, по его мнению, повлекло изменение фауны. Гук считал, что окаменелости — это остатки прежде живших существ, по которым можно воспроизвести историю Земли.

Гук был известен также как архитектор. Он был главным помощником Кристофера Рена при восстановлении Лондона после великого пожара 1666 года. В сотрудничестве с Реном и самостоятельно построил в качестве архитектора множество зданий (например, Гринвичскую обсерваторию, церковь Вилленского прихода в Милтон Кинсе). В частности, сотрудничал с Реном в строительстве лондонского Собора св. Павла, купол которого построен с использованием метода, придуманного Гуком. Внёс серьёзный вклад в градостроительство, предложив новую схему планировки улиц при восстановлении Лондона.

Сила придает телам ускорение и вызывает деформацию. Мы знаем, как определить ускорение. А как найти деформацию?

Деформацией тела называют изменение его размеров и формы. Деформация происходит в результате перемещения одних частей тела относительно других. На рисунке 150, а — г показаны различные виды деформаций: а) сжатие; 6) сдвиг; в) изгиб; г) кручение.

Для рисунка 150, а — г использована модель тела, состоящая из пластин и пружинок. Вы сами сможете моделировать любые деформации с помощью обычного ластика или кубика из поролона, на грани которого нанесены параллельные прямые (рис. 151).

Основными видами деформаций являются растяжение, сжатие (см. рис. 150, а) и сдвиг (см. рис. 150, б).

При сжатии и растяжении изменяются расстояния между слоями, а при сдвиге слон смешаются друг относительно друга.

Деформацию изгиба можно представить как комбинацию сжатия и растяжения, которые неодинаковы в разных частях тела (см. рис. 150, в). Деформация кручения сводится к комбинации деформации сдвига (см. рис. 150, г).

Деформации возникают под действием приложенных к телу внешних сил (см. рис. 150). Проведем опыт. Надавим на ластик (рис. 152, а). Он деформируется. Прекратим действие силы. Деформация исчезла (рис. 152,6). Если размеры и форма тела полностью восстанавливаются после прекращения действия силы, то деформацию называют упругой.

Деформируем теперь кусок пластилина (рис. 152,в). После прекращения действия силы его форма не восстановилась (рис. 152, г). Такую деформацию называют неупругой или пластической.

Характер деформации зависит не только от вещества, из которого состоит тело, но и от того, насколько велика внешняя сила, как долго она действует, а также от температуры тела. Например, если железную пластину немного изогнуть и отпустить, она восстановит свою форму. Однако если ее долго держать под такой же нагрузкой, то деформация станет неупругой. Если же температура тела высока, то деформация будет пластической даже при действии малой кратковременной силы.

Пластической деформации подвергают металл при прокатке, ковке (рис. 153), штамповке и т. д.

Рассмотрим самую простую деформацию: упругое растяжение. Как зависит величина деформации тела от приложенной к нему силы?

Проведем опыт. Закрепим один конец резинового шнура, а к другому подвесим груз (рис. 154).

Под действием деформирующей силы Fдеф (веса груза Р) шнур растянется. Его длина станет больше начальной длины 0 на величину Δ =- 0 (см. рис. 154). Будем увеличивать нагрузку, подвешивая два, три и т. д. одинаковых груза. При увеличении деформирующей силы в два, три и т. д. раза (Fдеф = Pl,2Р1, 3Р1…) удлинение шнура Δ возрастет во столько же раз (см. рис. 154). Значит, удлинение шнура прямо пропорционально модулю деформирующей силы: Δ ~ Fдеф).

Проведя аналогичные опыты по сжатию пружины (рис. 155), можно сделать вывод: при упругих деформациях сжатия и растяжения модуль изменения длины тела прямо пропорционален модулю деформирующей силы:

|Δ |~ Fдеф (1)

Пропорциональность сохраняется, пока деформация находится в пределах упругости. При неупругой деформации зависимость удлинения от деформирующей силы становится более сложной. При дальнейшем увеличении деформирующей силы наступает разрушение тела.

В опытах по растяжению шнура и сжатию пружины в ответ на действие деформирующей силы Fдеф возникала противодействующая ей сила упругости Fупр (см. рис. 154 и 155).

Сила упругости приложена к телу, которое вызывает деформацию, и направлена противоположно деформирующей силе.

Согласно третьему закону Ньютона

Из формул (1) и (2) следует

где к — постоянный коэффициент.

При упругих деформациях сжатия и растяжения модуль силы упругости прямо пропорционален модулю изменения длины тела.

Это утверждение носит название закон Гука.

Постоянная к = — называется коэффициентом упругости или жесткостью тела. Она численно равна модулю силы упругости при удлинении (или сжатии) тела на единицу длины. В СИ жесткость измеряется в ньютонах на метр ().

Жесткость тела зависит от материала, из которого оно изготовлено, от формы и размеров тела, от его температуры. Для тела постоянного поперечного сечения (шнура, проволоки и т. д.) жесткость прямо пропорциональна площади сечения S и обратно пропорциональна начальной длине тела 0: k = E.

‘Коэффициент Е называют модулем упругости. Он характеризует упругие свойства вещества. Например, модуль упругости стали в десятки тысяч раз больше, чем резины.

Из рисунков 154 и 155 видно, что и при растяжении, и при сжатии сила упругости направлена противоположно перемещению точки приложения деформирующей силы (точки А). С учетом этого закон Гука записывают в виде:

где Fyпр х — проекция силы упругости на ось Ох, х — координата точки А (см. рис. 154 и 155). Начало координат на оси Ох выбирается так, чтобы при х = 0 деформация отсутствовала.

На рисунках 156, а, б представлены графики, построенные по формулам (3) и (4). Прямолинейность графиков соответствует прямой пропорциональной зависимости модуля силы упругости от |Δ| и от х.

Не забывайте, что закон Гука, а значит, и соотношения (1), (3) и (4) выполняются только для упругих деформаций!

Все окружающие нас тела в той или иной степени деформированы. Хотя чаще всего эти деформации незаметны, связанные с ними силы упругости играют весьма существенную роль. Например, сила упругости папки уравновешивает силу тяжести книги (рис. 157, а), сила упругости подвеса компенсирует силу тяжести люстры (рис. 157, 6), сила упругости рельсов удерживает железнодорожный состав и т. д.

Упругую силу, возникающую в ответ на действие тела на опору, часто называют силой реакции опоры. Силу упругости растянутой нити, веревки, троса и т. д. — силой натяжения.

Почему при деформации возникают силы упругости? Какова их природа?

Силы упругости возникают потому, что молекулы, из которых состоят тела, взаимодействуют между собой. Когда внешние силы сжимают тело, молекулы сильнее отталкивают друг друга и препятствуют сжатию. Если же внешние силы растягивают тело, молекулы сильнее притягиваются друг к другу и противодействуют растяжению.

А почему молекулы взаимодействуют? Потому что они состоят из микрочастиц, обладающих электрическим зарядом: положительно заряженных ядер атомов и отрицательно заряженных электронов в их оболочках.

Следовательно, силы упругости имеют электромагнитную природу.

Упругие и пластические свойства тела зависят и от того, как расположены его молекулы (или атомы). На рисунке 158 изображены кристаллические решетки алмаза и графита. Различие в расположении одних и тех же частиц (атомов углерода) приводит к резким отличиям свойств этих веществ.

  1. Физкультминутка

  1. Закрепление знаний

Рассмотрим пример решения задачи на странице 112:

А сейчас перейдем к выполнению заданий на карточках по теме «Деформация тел. Сила упругости. Закон Гука» (приложение 1)

Ответ:

Под действием сил упругости резиновый жгут деформировался. На жгут на рисунке 2 действовала меньше сила упругости, чем на жгут на рисунке 1.

Ответ:

К упругой деформации можно отнести губку, безмен.

К пластической деформации можно отнести ластик, пластилин.

  1. Итоги урока

  • Изменение размеров или формы тела называется деформацией.

  • Если после прекращения действия внешних сил размеры и форма тела полностью восстанавливаются, то деформация называется упругой. Если не полностью, то — пластической.

  • Силы упругости направлены противоположно деформирующим силам.

  • При упругих деформациях сжатия и растяжения модуль силы упругости прямо пропорционален модулю изменения длины тела:

Организация домашнего задания

§ 22, упр. 15 № 1, 2.

Рефлексия.

Продолжите фразы:

  • Сегодня на уроке я узнал…

  • Было интересно…

  • Знания, которые я получил на уроке, пригодятся…

Приложение 1

Карточка по теме «Деформация тел. Сила упругости. Закон Гука»

Литература:
  1. Ковнер, «Очерки истории M.».
  2. Puccinotti, «Storia della medicina» (Ливорно, 1954—1959).
  3. Puccinotti, «Storia della medicina» (Ливорно, 1954—1959).
  4. https://www.yaklass.ru/p/fizika/7-klass/dvizhenie-i-vzaimodeistvie-tel-11864/deformatcii-tel-sila-uprugosti-zakon-guka-13746/re-9d6e9525-daca-44ed-9cfa-d0e5132fc60e.
  5. https://skysmart.ru/articles/physics/sila-uprugosti.
  6. https://Zaochnik.com/spravochnik/fizika/sily-v-prirode/sila-uprugosti/.
  7. https://infourok.ru/deformaciya-tel-sila-uprugosti-zakon-guka-2754637.html.
  8. Guardia, «La Médecine à travers les âges».
  9. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Доклиническое изучение противоопухолевой активности производного индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. № 1. С. 129.
  10. А.В. Ланцова, Е.В. Санарова, Н.А. Оборотова и др. Разработка технологии получения инъекционной лекарственной формы на основе отечественной субстанции производной индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. Т. 13. № 3. С. 25-32.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector