1. Деформация тел. Сила упругости. Закон Гука

1.

Деформация тел. Сила упругости. Закон Гука

Известно, что на все тела, находящиеся на Земле, действует сила тяжести, обусловленная гравитацией.

Какие ещё силы могут возникнуть? Рассмотрим несколько примеров.

(1). На яблоко в тарелке действует сила притяжения Земли. Фрукт не проваливается сквозь тарелку, а находится в покое.

Значит, существует сила, которая уравновешивает силу тяжести.

(2). Рассмотрим тело, подвешенное на нити. Сила тяжести будет направлена вниз.

Тело не может упасть, потому что силу тяжести компенсирует сила натяжения нити.

(3). Проведём опыт.

Позволим гире опуститься на середину доски на опорах.

Сила тяжести гири воздействует на доску и оказывает деформацию изгиба — заставляет сгибаться. Свойство упругости доски вызывает противоположную силу — силу реакции опоры — для того, чтобы вернуться в исходное, недеформированное состояние. Обе силы направлены вдоль одной прямой через центр масс гири, но направления противоположны, поэтому сумма сил равна нулю.

Под весом гири доска прогнулась — изменила свою форму.

Деформацией тела называют изменение размера или формы тела под воздействием внешних сил.

При изменении формы и размера под воздействием деформирующих сил каждое упругое тело пытается вернуться в начальное состояние.

Сила упругости — сила, которая возникает при деформации тела и стремится вернуть его

в исходное состояние.

Сила упругости — векторная величина, обозначается (vec{F})(_{упр}).

Чем сильнее давит тело на опору, тем больше деформация и возникающая в ответ на деформацию сила упругости. Деформация опоры прекращается в тот момент, когда действующие по вертикали силы уравновесят друг друга (сила упругости равна силе тяжести).

Если исчезнет деформирующая сила, то исчезнет и сила упругости.

В зависимости от приложенных сил различают виды деформации:

  • деформация растяжения и сжатия;

  • деформация сдвига;

  • деформация изгиба;

  • деформация кручения.

Деформация называется упругой в случае, если тело полностью восстановило свою форму и объём после прекращения действия деформирующей силы.

(4). Рассмотрим силы, действующие в опыте с гирей, подвешенной на нити.

Синей стрелкой обозначен вектор силы тяжести (vec{F_2}), направленной к центру Земли (вертикально вниз). Силе тяжести противодействует сила упругости нити (vec{F_1}), называемая силой натяжения нити. Она обозначена красной стрелкой, направленной вверх.

Гиря не движется, значит, силы компенсируют друг друга, сила тяжести равна силе упругости: (vec{F_1}-vec{F_2}=0); но направлена противоположно.

Подвесом называют нить, на которую подвешивается тело. Обычно имеют в виду нерастяжимую прочную нить.

Подвесом может быть упругое тело: пружина, резина. Значит, оно может растягиваться (деформироваться) под действием силы тяжести тела. При растяжении длина подвеса изменяется на некоторую величину, которую называют удлинением: (Delta l=l-l_0), где (l_0) — начальная длина нити, а (l) — конечная длина.

Закон Гука: изменение длины тела при растяжении (или сжатии) прямо пропорционально модулю силы упругости

F упр = k ⋅ Δ l , где

(Δl) — удлинение тела (изменение его длины),

(k) — коэффициент пропорциональности, который называется жёсткостью (пружины), которая зависит от материала.

Закон Гука работает только в случае, если деформация была упругая.

Изменение длины, закон Гука

Для того, чтобы иметь полную картину работы растянутого или сжатого стержня, необходимо уметь вычислять то, как будут под нагрузкой меняться его размеры:

  • Продольный размер/изменение длины (удлинение при растяжении, укорочение при сжатии)
  • Поперечный размер/изменение толщины (сужение при растяжении, утолщение при сжатии)

Сначала проанализируем изменение длины.

Снова вернёмся к диаграммам из опытов на растяжение. Напомню, нас интересует только начальная (линейная) часть графика.

Так как мы рассматриваем только прямой отрезок на графике, то его можно описать с помощью линейной функции:

Здесь в качестве y выступает приложенная сила P (размерность в Н), а в качестве x — удлинение ∆L (размерность в мм). Получаем:

Перезаписав эту формулу относительно удлинения, получим:

k — это коэффициент жёсткости стержня. Как видно из формулы, чем больше k, тем меньше стержень удлинится.

Допустим, перед нами стоит задача определить удлинение стержня при заданной растягивающей нагрузке. Но откуда взять коэффициент жёсткости k?

Для ответа на этот вопрос следует провести серию сравнительных опытов. Суть их такова, что надо прикладывать одну и ту же силу к почти одинаковым образцам и через различия в удлинениях сделать вывод о влиянии (или отсутствии такового) на коэффициент жёсткости тех факторов, которые были выбраны разными.

Допустим, что коэффициент жёсткости зависит от длины стержня L. Берём два почти идентичных стержня одинаковой толщины из одного и того же материала, только один, например, в два раза длиннее другого. Растягиваем их одинаковой силой. Так как длинный стержень, по сути, «содержит в себе» два коротких, то его удлинение также будет в два раза больше удлинения короткого стержня. Вывод из этого опыта: коэффициент жёсткости стержня зависит от его длины. Чем короче стержень, тем он жёстче.

Или другой опыт: возьмём два стержня одинаковой длины из одного и того же материала, только один стержень будет толще другого так, что площадь его поперечного сечения F будет в два раза больше площади поперечного сечения другого стержня. После растяжения их одной и той же силой можно заметить, что более тонкий стержень удлинится в два раза больше, чем более толстый. Отсюда вывод, что коэффициент жёсткости стержня зависит от площади поперечного сечения. Чем толще стержень, тем он жёстче.

Эти два опыта исчерпывающе показывают зависимость коэффициента жёсткости стержня от его геометрии. Однако коэффициент жёсткости зависит также и от материала этого стержня. Два одинаковых по форме стержня из стали и из дерева будут иметь совершенно разные коэффициенты жёсткости. Что именно в материалах создаёт такие различия — неизвестно.

Мы всё неизвестное в материале, что так или иначе вызывает различия в коэффициентах k, заключим в одну величину и обозначим её буквой E.

В итоге получим экспериментальную зависимость для коэффициента жёсткости :

Зная размерность жёсткости [k]=Н/мм, можно найти размерность E:

Эту величину впервые ввёл английский физик Томас Юнг.

Эта величина E называется модулем упругости материала при растяжении (или модулем Юнга), и она характеризует способность твёрдого тела упруго деформироваться при приложении к нему растягивающей силы.

По сути же, она является макроскопическим следствием микроскопических связей в веществе. Как же определить модуль упругости для того или иного материала?

Для начала запишем итоговую формулу для удлинения стержня:

Выразим отсюда модуль упругости:

Для определения модуля Юнга необходимо:

  1. провести опыт на растяжение,
  2. выбрать произвольную точку на начальном линейном участке,
  3. определить удлинение в ней и соответствующую силу,
  4. зная площадь поперечного сечения и длину стержня, вычислить модуль Юнга

Величины модулей упругости и плотности некоторых материалов:

Что касается сжатия, то при сравнении модулей Юнга при растяжении и сжатии большинства материалов, можно заметить незначительные различия в их величинах. Этими различиями часто пренебрегают.

Так как рассматривается только линейный участок, то и значения модулей Юнга соответствуют жёсткости материала на линейном участке.

Однако в инженерной практике бывают случаи, когда, например, напряжения в металле выходят за предел пропорциональности. Когда это происходит, то значения модуля Юнга начинают уменьшаться по сравнению со значением в упругой зоне.

В итоге мы имеем формулу для нахождения изменения длины при растяжении или сжатии:

Это — экспериментальный закон Гука. По этой формуле можно находить изменения длины в стержнях или колоннах, испытывающих осевое растяжение или сжатие. Однако, хотя данная формула и позволяет считать изменения длины для элементов под осевой нагрузкой, она является упрощением реальной картины происходящего. Что это означает? Поясню на примере:

Желая растянуть стержень, например, 100 килограммами, мы эти 100 килограмм будем прикладывать очень медленно. То есть сначала приложим только килограмм, потом два, три и т.д. вплоть до ста. Но ведь проблема в том, что при нагружении одним килограммом, стержень уже удлинится. То есть чтобы подсчитать удлинение при действии двух килограммов, придётся брать изначальную длину стержня, которая будет соответствовать длине растянутого одним килограммом стержня. И так далее. Но если вы проведёте точный расчёт даже для относительно мягкого алюминия, вы обнаружите, что различие между точным и приближённым расчётом будет ничтожно мало. Потому, на практике применяется приближённый расчёт.

То же самое и с площадью поперечного сечения. Стержень сужается не только в пластической зоне (где это сужение видно невооружённым глазом), но и в линейной (упругой), где это изменение можно отследить только с помощью точных приборов. А так как мы имеем дело в основном с линейной частью графика, то потому берётся изначальная площадь поперечного сечения. Это явление (сужение при удлинении) будет рассмотрено чуть позже.

Формулу для нахождения удлинений можно видоизменить, перейдя к относительным величинам.

Сила, приходящаяся на единицу площади — это напряжение, с которым уже имели дело:

Удлинение, приходящееся на единицу длины — это относительное удлинение. Обозначим эту величину греческой буквой ε:

В итоге получим:

Или

Это — закон Гука в относительной форме. Можно заметить, что размерность модуля Юнга — паскали, как и размерность напряжения. Исходя из этого, можно дать определение модулю Юнга, как фиктивному напряжению, при котором стержень удлинится на величину своей исходной длины. Но так как удлинения в конструкционных металлах просто ничтожны по сравнению с исходными длинами, то и модуль Юнга в разы больше, чем действующие напряжения.

Рассмотренные случаи являются лишь частными случаями осевого нагружения тела. Очень часто бывает так, что

  • нужно учесть собственный вес вертикально расположенного тела (например, при очень большой длине);
  • или тело может иметь переменное сечение по длине;
  • или оно может быть составленным из нескольких разных тел вдоль оси;
  • или же внешнее нагружение может меняться по длине;
  • и так далее, случаев может быть множество

В качестве немного более общего примера решим задачу.

Задача: Определить удлинение конического бруса при действии собственного веса, если высота конуса равна L, диаметр основания равен D, вес единицы объёма материала равен γ (плотность тела с размерностью силы (ньютоны) поделённые на объём (кубические метры, миллиметры и т.п.)), модуль упругости материала равен E. Известно, что материал конуса при растяжении от собственного веса работает в пределах упругости и к нему применим закон Гука.

Решение:

Объём конуса определяется по формуле:

Вес конуса равен удельному весу материала, умноженному на объём конуса:

Введём систему координат и выделим элемент бесконечно малой длины dx на расстоянии x от вершины конуса

По свойству бесконечно малых величин, усилия и напряжения на верхней и нижней поверхности элемента от действия нижележащей массы будут равны.

При небольшом угле конуса можно сделать допущение, что растягивающие напряжения равномерно распределены по поперечному сечению (в реальности напряжения будут выше на краях). Нужно вывести выражение для растягивающего усилия для любого сечения на расстоянии x от вершины конуса. Диаметр любого сечения, отстоящего от вершины конуса на x можно найти из подобия треугольников.

Элемент длиной dx, площадью F(x) растягивается силой P(x). Требуется найти удлинение элемента dx:

Теперь нужно просуммировать удлинения всех элементов dx по высоте конуса L:

В итоговом выражении для удлинения отсутствует диаметр основания из-за сделанного нами допущения, которое справедливо только для конусов с малым углом (т.е. очень острых конусов). Для всех остальных конусов решение будет иметь более сложный вид.

В целом, суть решения всех задач по осевому растяжению/сжатию тел сводится к определению удлинений отдельных его частей/частиц и к итоговому их суммированию для получения общего удлинения. Для получения напряжения в любом поперечном сечении нужно найти силу, действующую в нём, и поделить её на площадь этого сечения.

Сила упругости

Сила: что это за величина

В повседневной жизни мы часто встречаем, как любое тело деформируется (меняет форму или размер), ускоряется или тормозит, падает. В общем, чего только с разными телами в реальной жизни не происходит. Причиной любого действия или взаимодействия является сила.

Сила — это физическая векторная величина, которую воздействует на данное тело со стороны других тел.

Она измеряется в Ньютонах — это единица измерения названа в честь Исаака Ньютона.

Сила — величина векторная. Это значит, что, помимо модуля, у нее есть направление. От того, куда направлена сила, зависит результат.

Вот стоите вы на лонгборде: можете оттолкнуться вправо, а можете влево — в зависимости от того, в какую сторону оттолкнетесь, результат будет разный. В данном случае результат выражается в направлении движения.

Деформация

Деформация — это изменение формы и размеров тела (или части тела) под действием внешних сил

Происходит деформация из-за различных факторов: при изменении температуры, влажности, фазовых превращениях и других воздействиях, вызывающих изменение положения частиц тела.

Деформация является деформацией, пока сила, вызывающая эту деформацию, не приведет к разрушению.

На появление того или иного вида деформации большое влияние оказывает характер приложенных к телу напряжений. Одни процессы деформации связаны с преимущественно перпендикулярно (нормально) приложенной силой, а другие — преимущественно с силой, приложенной по касательной.

По характеру приложенной к телу нагрузки виды деформации подразделяют следующим образом:

  • Деформация растяжения
  • Деформация сжатия
  • Деформация сдвига
  • Деформация при кручении
  • Деформация при изгибе

Сила упругости: Закон Гука

Давайте займемся баскетболом. Начнем набивать мяч о пол, он будет чудесно отскакивать. Этот удар можно назвать упругим. Если при ударе деформации не будет совсем, то он будет называться абсолютно упругим.

Если вы перепутали мяч и взяли пластилиновый, он деформируется при ударе и не оттолкнется от пола. Такой удар будет называться абсолютно упругим.

Деформацию тоже можно назвать упругой (при которой тело стремится вернуть свою форму и размер в изначальное состояние) и неупругой (когда тело не стремится вернуться в исходное состояние).

При деформации возникает сила упругости- это та сила, которая стремится вернуть тело в исходное состояние, в котором оно было до деформации.

Сила упругости, возникающая при упругой деформации растяжения или сжатия тела, про­порциональна абсолютному значению изменения длины тела. Выражение, описывающее эту закономерность, называется законом Гука.

Закон Гука

Fупр = kx

Fупр — сила упругости [Н]

k — коэффициент жесткости [Н/м]

х — изменение длины (деформация) [м]

Важно раз

Изменение длины может обозначаться по-разному в различных источниках. Варианты обозначений: x, ∆x, ∆l.

Это равноценные обозначения — можно использовать любое удобное.

Важно два

Поскольку сила упругости направлена против направления силы, с которой это тело деформируется (она же стремится все «распрямить»), в Законе Гука должен быть знак минус. Часто его и можно встретить в разных учебниках. Но поскольку мы учитываем направление этой силы при решении задач, знак минус можно не ставить.

Задачка

На сколько удлинится рыболовная леска жесткостью 0,3 кН/м при поднятии вверх рыбы весом 300 г?

Решение:

Сначала определим силу, которая возникает, когда мы что-то поднимаем. Это, конечно, сила тяжести. Не забываем массу представить в единицах СИ — килограммах.

СИ — международная система единиц.

«Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

m = 300 г = 0,3 кг

Если принять ускорение свободного падения равным 10 м/с*с, то модуль силы тяжести равен :

F = mg = 0,3*10 = 3 Н.

Тогда из Закона Гука выразим модуль удлинения лески:

F = kx

Выражаем модуль удлинения:

x = F/k

Подставим числа, жесткость лески при этом выражаем в Ньютонах:

x=3/(0,3 * 1000)=0,01 м = 1 см

Ответ: удлинение лески равно 1 см.

Параллельное и последовательное соединение пружин

В Законе Гука есть такая величина, как коэффициент жесткости- это характеристика тела, которая показывает его способность сопротивляться деформации. Чем больше коэффициент жесткости, тем больше эта способность, а как следствие из Закона Гука — и сила упругости.

Чаще всего эта характеристика используется для описания жесткости пружины. Но если мы соединим несколько пружин, то их суммарная жесткость нужно будет рассчитать. Разберемся, каким же образом.

Последовательное соединение системы пружин

Последовательное соединение характерно наличием одной точки соединения пружин.

При последовательном соединении общая жесткость системы уменьшается. Формула для расчета коэффициента упругости будет иметь следующий вид:

Коэффициент жесткости при последовательном соединении пружин

1/k = 1/k₁ + 1/k₂ + … + 1/k_i

k — общая жесткость системы [Н/м] k1, k2, …, — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Параллельное соединение системы пружин

Последовательное соединение характерно наличием двух точек соединения пружин.

В случае когда пружины соединены параллельно величина общего коэффициента упругости системы будет увеличиваться. Формула для расчета будет выглядеть так:

Коэффициент жесткости при параллельном соединении пружин

k = k₁ + k₂ + … + k_i

k — общая жесткость системы [Н/м] k1, k2, …, ki — отдельные жесткости каждого элемента [Н/м] i — общее количество всех пружин, задействованных в системе [-]

Задачка

Какова жесткость системы из двух пружин, жесткости которых k₁ = 100 Н/м, k₂ = 200 Н/м, соединенных: а) параллельно; б) последовательно?

Решение:

а) Рассмотрим параллельное соединение пружин.

При параллельном соединении пружин общая жесткость

k = k₁ + k₂ = 100 + 200 = 300 Н/м

б) Рассмотрим последовательное соединение пружин.

При последовательном соединении общая жесткость двух пружин

1/k = 1/k₁ + 1/k₂ + … + 1/k

1/k = 1/100 + 1/200 = 0,01 + 0,005 = 0,015

k = 1000/15 = 200/3 ≃ 66,7 Н/м

Очень-очень важно!

Не забудь при расчете жесткости при последовательном соединении в конце перевернуть дробь.

График зависимости силы упругости от жесткости

Закон Гука можно представить в виде графика. Это график зависимости силы упругости от изменения длины и по нему очень удобно можно рассчитать коэффициент жесткости. Давай рассмотрим на примере задач.

Задачка 1

Определите по графику коэффициент жесткости тела.

Решение:

Из Закона Гука выразим коэффициент жесткости тела:

F = kx

k = F/x

Снимем значения с графика. Важно выбрать одну точку на графике и записать для нее значения обеих величин.

Например, возьмем вот эту точку.

В ней удлинение равно 2 см, а сила упругости 2 Н.

Переведем сантиметры в метры: 2 см = 0,02 м И подставим в формулу: k = F/x = 2/0,02 = 100 Н/м

Ответ:жесткость пружины равна 100 Н/м

Задачка 2

На рисунке представлены графики зависимости удлинения от модуля приложенной силы для стальной (1) и медной (2) проволок равной длины и диаметра. Сравнить жесткости проволок.

Решение:

Возьмем точки на графиках, у которых будет одинаковая сила, но разное удлинение.

Мы видим, что при одинаковой силе удлинение 2 проволоки (медной) больше, чем 1 (стальной). Если выразить из Закона Гука жесткость, то можно увидеть, что она обратно пропорциональна удлинению.

k = F/x

Значит жесткость стальной проволоки больше.

Ответ: жесткость стальной проволоки больше медной.

Литература:
  1. Харенко Е. А., Ларионова Н. И., Демина Н. Б. Мукоадгезивные лекарственные формы. Химико-фармацевтический журнал. 2009; 43(4): 21–29. DOI: 10.30906/0023-1134-2009-43-4-21-29.
  2. Renouard, «Histoire de la medicine» (П., 1948).
  3. Renouard, «Histoire de la medicine» (П., 1948).
  4. https://www.yaklass.ru/p/fizika/7-klass/dvizhenie-i-vzaimodeistvie-tel-11864/deformatcii-tel-sila-uprugosti-zakon-guka-13746/re-9d6e9525-daca-44ed-9cfa-d0e5132fc60e.
  5. https://ukazov.ru/blog/izmenenie-dliny-zakon-guka/.
  6. https://skysmart.ru/articles/physics/sila-uprugosti.
  7. Ковнер, «Очерки истории M.».
  8. М.П. Киселева, З.С. Шпрах, Л.М. Борисова и др. Доклиническое изучение противоопухолевой активности производного N-гликозида индолокарбазола ЛХС-1208. Сообщение II // Российский биотерапевтический журнал. 2015. № 3. С. 41-47.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector