Алюминий – свойства и сплавы алюминия

СВОЙСТВА АЛЮМИНИЯ

Содержание:

— марки алюминия

— физические свойства

— коррозионные свойства

— механические свойства

— технологические свойства

— применение

Марки алюминия.

Алюминий характеризуется высокой электро- и теплопроводностью, коррозионной стойкостью, пластичностью, морозостойкостью. Важнейшим свойством алюминия является его малая плотность (примерно 2.70 г/куб.см). Температура плавления алюминия около 660 С.

Физико-химические, механические и технологические свойства алюминия очень сильно зависят от вида и количества примесей, ухудшая большинство свойств чистого металла. Основными естественными примесями в алюминии являются железо и кремний. Железо, например, присутствуя в виде самостоятельной фазы Fe-Al, снижает электропроводность и коррозионную стойкость, ухудшает пластичность, но несколько повышает прочность алюминия.

В зависимости от степени очистки первичный алюминий разделяют на алюминий высокой и технической чистоты (ГОСТ 11069-2001). К техническому алюминию относятся также марки с маркировкой АД, АД1, АД0, АД00 (ГОСТ 4784-97). Технический алюминий всех марок получают электролизом криолит-глиноземных расплавов. Алюминий высокой чистоты получают дополнительной очисткой технического алюминия. Особенности свойств алюминия высокой и особой чистоты рассмотрены в книгах

1) Металловедение алюминия и его сплавов. Под ред. И.Н.Фридляндер. М. 1971.2) Механические и технологические свойства металлов. А.В.Бобылев. М. 1980.

Ниже в таблице приведена сокращенная информация о большей части марок алюминия. Также указано содержание его основных естественных примесей — кремния и железа.

МаркаAl, %Si, %Fe, %Применения
Алюминий высокой чистоты
А99599.995

0.0015

0.0015

— Химическая аппаратура

— Фольга для обкладок конденсаторов

— Специальные цели

А9899.98

0.006

0.006

А9599.95

0.02

0.025

Алюминий технической чистоты
А8 АД00099.8

0.10

0.15

0.12

0.15

— Катанка для производства

кабельно-проводниковой продукции

(из А7Е и А5Е).

— Сырье для производства алюминиевых сплавов

— Фольга

— Прокат (прутки, ленты, листы, проволока, трубы)

А7 АД0099.7

0.15

0.2

0.16

0.25

А699.6

0.18

0.25

А5Е99.5

0.10

0.20

А5 АД099.5

0.25

0.25

0.30

0.40

АД199.3

0.30

0.30

А0 АД99.0

0.95

В сумме до 1.0 %

Главное практическое различие между техническим и высоокоочищенным алюминием связано с отличиями в коррозионной устойчивости к некоторым средам. Естественно, что чем выше степень очистки алюминия, тем он дороже.

В специальных целях используется алюминий высокой чистоты. Для производства алюминиевых сплавов, кабельно-проводниковой продукции и проката используется технический алюминий. Далее речь будет идти о техническом алюминии.

Электропроводность.

Важнейшее свойство алюминия — высокая электропроводность, по которой он уступает только серебру, меди и золоту. Сочетание высокой электропроводности с малой плотностью позволяет алюминию конкурировать с медью в сфере кабельно-проводниковой продукции.

На электропроводность алюминия кроме железа и кремния сильно влияет хром, марганец, титан. Поэтому в алюминии, предназначенном для изготовления проводников тока, регламентируется содержание ещё нескольких примесей. Так, в алюминии марки А5Е при допускаемом содержании железа 0.35%, а кремния 0.12%, сумма примесей Cr+V+Ti+Mn не должна превышать всего лишь 0.01%.

Электропроводность зависит от состояния материала. Длительный отжиг при 350 С улучшает проводимость, а нагартовка проводимость ухудшает.

Величина удельного электрического сопротивления при температуре 20 С составляет Ом*мм2/м или мкОм*м :

0.0277 — отожженная проволока из алюминия марки А7Е

0.0280 — отожженная проволока из алюминия марки А5Е

0.0290 — после прессования, без термообработки из алюминия марки АД0

Таким образом удельное электросопротивление проводников из алюминия примерно в 1.5 раза выше электросопротивления медных проводников. Соответственно электропроводность (величина обратная удельному сопротивлению) алюминия составляет 60-65% от электропроводности меди. Электропроводность алюминия растет с уменьшением количества примесей.

Температурный коэффициент электросопротивления алюминия (0.004) приблизительно такой же, как у меди.

Теплопроводность

Теплопроводность алюминия при 20 С составляет примерно 0.50 кал/см*с*С и возрастает с увеличением чистоты металла. По теплопроводности алюминий уступает только серебру и меди (примерно 0.90), втрое превышая теплопроводность малоуглеродистой стали. Это свойство определяет применение алюминия в радиаторах охлаждения и теплообменниках.

Другие физические свойства.

Алюминий имеет очень высокую удельную теплоемкость (примерно 0.22 кал/г*С). Это значительно больше, чем для большинства металлов (у меди — 0.09). Удельная теплота плавления также очень высока (примерно 93 кал/г). Для сравнения — у меди и железа эта величина составляет примерно 41-49 кал/г.

Отражательная способность алюминия сильно зависит от его чистоты. Для алюминиевой фольги чистотой 99.2% коэфициент отражения белого света равен 75%, а для фольги с содержанием алюминия 99.5% отражаемость составляет уже 84%.

Коррозионные свойства алюминия.

Сам по себе алюминий является очень химически активным металлом. С этим связано его применение в алюмотермии и в производстве ВВ. Однако на воздухе алюминий покрывается тонкой (около микрона), пленкой окиси алюминия. Обладая высокой прочностью и химической инертностью, она защищает алюминий от дальнейшего окисления и определяет его высокие антикоррозионные свойства во многих средах.

В алюминии высокой чистоты окисная пленка сплошная и беспористая, имеет очень прочное сцепление с алюминием. Поэтому алюминий высокой и особой чистоты очень стоек к действию неорганических кислот, щелочей, морской воды и воздуха. Сцепление окисной пленки с алюминием в местах нахождения примесей значительно ухудшается и эти места становятся уязвимы для коррозии. Поэтому алюминий технической чистоты имеет меньшую стойкость. Например по отношению к слабой соляной кислоте стойкость рафинированного и технического алюминия различается в 10 раз.

На алюминии (и его сплавах) обычно наблюдается точечная коррозия. Поэтому устойчивость алюминия и его сплавов во многих средах определяется не по изменению веса образцов и не по скорости проникновения коррозии, а по изменению механических свойств.

Основное влияние на коррозионные свойства технического алюминия оказывает содержание железа. Так, скорость коррозии в 5% растворе HCl для разных марок составляет (в ):

МаркаСодержаниеAlСодержание FeСкорость коррозии
А799.7%< 0.16%0.25 — 1.1
А699.6%< 0.25%1.2 — 1.6
А099.0%< 0.8%27 — 31

Наличие железа уменьшает стойкость алюминия также к щелочам, но не сказывается на стойкости к серной и азотной кислоте. В целом коррозионная стойкость технического алюминия в зависимости от чистоты ухудшается в таком порядке: А8 и АД000, А7 и АД00, А6, А5 и АД0, АД1, А0 и АД.

При температуре свыше 100С алюминий взаимодействует с хлором. С водородом алюминий не взаимодействует, но хорошо его растворяет, поэтому он является основной составляющей газов, присутствующих в алюминии. Вредное влияние на алюминий оказывает водяной пар, диссоциирующий при 500 С, при более низких температурах действие пара незначительно.

Алюминий устойчив в следующих средах:

— промышленная атмосфера

— естественная пресная вода до температур 180 С. Скорость коррозии возрастает при аэрации,

примесях едкого натра, соляной кислоты и соды.

— морская вода

— концентрированная азотная кислота

— кислые соли натрия, магния, аммония, гипосульфит.

— слабые (до 10%) растворы серной кислоты,

— 100% серная кислота

— слабые растворы фосфорной (до 1%), хромовой (до 10%)

— борная кислота в любых концентрациях

— уксусная, лимонная, винная. яблочная кислота, кислые фруктовые соки, вино

— раствор аммиака

Алюминий неустойчив в таких средах:

— разбавленная азотная кислота

— соляная кислота

— разбавленная серная кислота

— плавиковая и бромистоводородная кислота

— щавелевая, муравьиная кислота

— растворы едких щелочей

— вода, содержащая соли ртути, меди, ионов хлора, разрушающих окисную пленку.

Контактная коррозия

В контакте с большинством технических металлов и сплавов алюминий служит анодом и его коррозия будет увеличиваться.

Механические свойства

Модуль упругости E = 7000-7100 кгс/мм2 для технического алюминия при 20 С. При повышении чистоты алюминия его величина уменьшается (6700 для А99).

Модуль сдвига G = 2700 кгс/мм2.

Основные параметры механических свойств технического алюминия приведены ниже:

Параметр

Ед. изм.

Деформированный

Отожженный

Предел текучести ?0.2

кгс/мм2

8 — 12

4 — 8

Предел прочности при растяжении ?в

кгс/мм2

13 — 16

8

Относительное удлинение при разрыве ?

%

5 — 10

30 — 40

Относительное сужение при разрыве

%

50 — 60

70 — 90

Предел прочности при срезе

кгс/мм2

10

6

Твердость

НВ

30 — 35

20

Приведенные показатели очень ориентировочны:

1) Для отожженного и литого алюминия эти значения зависят от марки технического алюминия. Чем больше примесей, тем больше прочность и твердость и ниже пластичность. Например твердость литого алюминия составляет: для А0 — 25НВ, для А5 — 20НВ, а для алюминия высокой чистоты А995 — 15НВ. Предел прочности при растяжении для этих случаев составляет: 8,5; 7.5 и 5 кгс/мм2, а относительное удлинение 20; 30 и 45% соответственно.

2) Для деформированного алюминия механические свойства зависят от степени деформации, вида проката и его размеров. Например предел прочности при растяжении составляет не менее 15-16 кгс/мм2 для проволоки и 8 — 11 кгс/мм2 для труб.

Однако, в любом случае, технический алюминий это мягкий и непрочный металл. Низкий предел текучести (даже для нагартованного проката он не превышает 12 кгс/мм2) ограничивает применение алюминия по допустимым нагрузкам.

Алюминий имеет низкий предел ползучести: при 20 С — 5 кгс/мм2, а при 200 С — 0.7 кгс/мм2. Для сравнения: у меди эти показатели равны 7 и 5 кгс/мм2 соответственно.

Низкая температура плавления и температура начала рекристаллизации (для технического алюминия примерно 150 С), низкий предел ползучести ограничивают температурный диапазон эксплуатации алюминия со стороны высоких температур.

Пластичность алюминия не ухудшается при низких температурах, вплоть до гелиевых. При понижении температуры от +20 С до — 269 С, предел прочности возрастает в 4 раза у технического алюминия и в 7 раз у высокочистого. Предел упругости при этом возрастает в 1.5 раза.

Морозостойкость алюминия позволяет использовать его в криогенных устройствах и конструкциях.

Технологические свойства.

Высокая пластичность алюминия позволяет производить фольгу (толщиной до 0.004 мм), изделия глубокой вытяжкой, использовать его для заклепок.

Алюминий технической чистоты при высоких температурах проявляет хрупкость.

Обрабатываемость резанием очень низкая.

Температура рекристаллизационного отжига 350-400 С, температура отпуска — 150 С.

Свариваемость.

Трудности сварки алюминия обусловлены 1) наличием прочной инертной окисной пленки, 2) высокой теплопроводности.

Тем не менее алюминий считается хорошо свариваемым металлом. Сварной шов имеет прочность основного металла (в отожженном состоянии) и такие же коррозионные свойства. Подробно о сварке алюминия см., например, www.weldingsite.com.ua.

Применение.

Из-за низкой прочности алюминий применяется только для ненагруженных элементов конструкций, когда важна высокая электро- или теплопроводность, коррозионная стойкость, пластичность или свариваемость. Соединение деталей осуществляется сваркой или заклепками. Технический алюминий применяется как для литья, так и для производства проката.

На складе предприятия постоянно имеются листы, проволока и шины из технического алюминия.

(см. соответствующие страницы. сайта). Под заказ поставляются чушки А5-А7.

Алюминий – свойства и сплавы алюминия

Основные характеристики механических свойств сплавов цветных металлов

  • E — модуль упругости — коэффициент пропорциональности между нормальным напряжением и относительным удлинением;
  • G — модуль сдвига (модуль касательной упругусти) — коэффициент пропорциональности между касательным напряжением и относительным сдвигом;
  • μ — коэффициент Пуассона — абсолютное значение отношения поперечной деформации к продолной в упругой области;
  • σт — предел текучести (условный) — напряжение при котором остаточная деформация после снятия нагрузки составляет 0,2%;
  • σв — временное сопротивление (предел прочности) — прочность на разрыв;
  • δ — относительное удлинение — отношение абсолютного остаточного удлинения образца после разрыва к начальной расчётной длине;
  • твёрдость (HB, HRC, HV).

Механический свойства алюминиевых сплавов

Для обозначения состояний деформируемых сплавов приняты следующие обозначения: М — мягкий, отожжённый; П — полунагартованный; Н — нагартованный; Т — закалённый и естественно состаренный; Т1 — закалённый и искусственно состаренный на высокую прочность; Т2 — закалённый и искусственно состаренный по режиму, обеспечивающему по сравнению с режимом Т1 более высокие значения вязкости разрешения и сопротивления коррозии под напряжением; Т3 — аналогично Т2 с улучшенными свойствами. Буква «ч» в обозначении марки сплава указывает на повышенную чистоту сплава (по содержанию примесей).

Механические свойства алюминиевых деформируемых сплавов

E = 70…72 ГПа, G = 27…28 ГПа, коэффициент Пуассона μ = 0,31…0,33.

Система легированияСплав, состояниеПолуфабрикатПредел прочности σв, МПаПредел текучести σт, МПаТвёрдость HB, МПа
Al — MgАМг5МПруток, штамповка300160HB 650
Al — MgАМг6МПоковка300150
Al — MgАМг6НЛист400300

Правила маркировки сплавов алюминия

Марку материала определить достаточно сложно, поэтому алюминиевые сплавы маркируют таким образом, чтобы было понятно, что это именно они. Номер присваивают каждому составу. Он имеет буквенно-цифровое обозначение.

Существует несколько особенностей, свойственных маркировке:

  • В начале номера стоит несколько букв, говорящих о составе материала.
  • Затем идет цифровой порядковый код.
  • Окончание — цифра, говорящая об особенностях проведения обработки (например, термической).

Для лучшего понимания процесса маркировки рассмотрим пример сплава Д17П. Согласно правилу, первая буква говорит нам о составе сплава. Д — дюралюминий. Химический состав у всего дюралюминия одинаков, различия заключаются в концентрации основных входящих в него элементов. Следующая за буквой Д цифра 17 говорит о порядковом номере материала, имеющего определенные качества. Последняя буква, в данном случае П, указывает на полунагартованный сплав. То есть методом обработки материала является давление без предваряющего его нагрева. Следовательно, прочность материала, полученного в ходе такой обработки, будет в два раза ниже максимальной.

Механические свойства титановых сплавов

E = 110…120 ГПа, G = 42…45 ГПа, коэффициент Пуассона μ = 0,31…0,34.

Система легированияСплавПолуфабрикатПредел прочности σв, МПаПредел текучести σт, МПа
ВТ1-199,04% TiСплав малой прочности после отжига.450-600380-500
Ti — AlВТ5Среднепрочный сплав после отжига.750-950650-700
Ti — Al — VВТ6Высокопрочный сплав после закалки и старения.11501050

Механический свойства медных сплавов

Медные сплавы разделяются на две основные группы: латуни и бронзы. Латуни — сплавы, легированные цинком. Различают простые и специальные латуни.

Простые латуни (двойные сплавы) маркируют буквой Л, за которой следует содержание меди в процентах. В обозначении специальных латуней после буквы Л следуют заглавные буквы легирующих элементов и содержание меди в процентах, затем через тире — процентное содержание каждого легирующего элемента. Бронзы — сплавы, легированные различными элементами за исключением цинка. Маркируют бронзы буквой Бр, в остальном повторяется система маркировки латуней. Сплавы, в которых основным легирующим элементом является никель, именуются медно-никелевыми и имеют специальные названия. Деформируемые медные сплавы поставляются в мягком (отожженном и закаленном), полутвердом (обжатие 10-30%), твердом (обжатие 30-50%) и особо твердом (обжатие более 60%) состояниях. Сплавы на основе олова или свинца — баббиты, маркируются буквой Б, за которой следует цифра, обозначающая содержание олова в сплаве.

Виды алюминиевых сплавов

Основой для создания алюминия и его сплавов являются несколько видов металлической руды:

  • литейная;
  • первичная;
  • деформируемая;
  • техническая;
  • антифрикционная.

В соответствии со способом использования вещества разделяют на литейные и деформируемые. И если первые прекрасно заполняют собой формы, применяемые для отлива, то вторые имеют высокую пластичность, появляющуюся уже после термической обработки.

Пластичность вещества говорит о его стойкости к коррозии и улучшенной свариваемости. Имеется прямая связь между количеством меди в сплаве алюминия и его прочностью. Легирующее вещество в количестве 6 %, добавляемое в сплав, позволяет увеличить стойкость к механическим воздействиям на 30 МПа, а текучесть на 20 МПа.

При этом происходит снижение показателя относительного удлинения, который, впрочем, не выходит за пределы 35 %. Для сохранения необходимых показателей стойкости к коррозии нужно следить за тем, чтобы количество магния не было более 6 %. В противном случае структура сплава будет нестабильной.

Для улучшения характеристик сплава в него добавляют:

  • хром;
  • кремний;
  • марганец;
  • ванадий;
  • титан.

Если в соединение добавить железо и медь, то это плохо отразится на его состоянии: ухудшатся показатели устойчивости к коррозии и свариваемости.

Пластичность будет возрастать с добавлением марганца. Кроме того, он будет делать вещество более стабильным. А мелкозернистой структура станет после легирования титаном. Основными примесями марганцевых соединений являются железо и кремний.

Рекомендовано к прочтению

  • Резка меди лазером: преимущества и недостатки технологии
  • Виды резки металла: промышленное применение
  • Металлообработка по чертежам: удобно и выгодно

Кремний, медь и алюминий добавляются при изготовлении блоков цилиндров, а также втулочных подшипников. Поверхность получается достаточно твердой, но приработка будет требовать значительных усилий.

Термическая стойкость возрастает в результате легирования медью. Она повышается даже у низкоуглеродистой стали. Однако стойкость к коррозии у такого материала низкая, он требует обязательной обработки, а также полимеризации.

Модификация алюминиево-медного сплава происходит при добавлении:

  • магния;
  • марганца;
  • кремния;
  • железа.

Прочность материала значительно повышается при добавлении в его состав магния, который также придает ему текучесть. Термостойкость возрастает при добавке железа и никеля. В результате происходит стимуляция искусственного старения сплава.

Силумин получают посредством добавления кремния. Натрий и никель в небольшом количестве помогают повысить качественные характеристики сплава. Применяются такие материалы в основном для производства различных деталей и корпусов для бытовой техники, а также декоративного литья, поскольку имеют прекрасные литейные характеристики.

Стойкость к механическим воздействиям материалу придают удобные в обработке цинк, алюминий и магний. Это достигается благодаря магнию и цинку, имеющим хорошую растворимость. Правда, понижение температуры способно заметно снизить свойства сплава. Кроме того, он не устойчив к ржавчине. Этот недостаток исправляется легированием медью.

Механические свойства деформируемых латуней

E = 105…115 ГПа.

Тип латуниМарка латуниСостояниеПредел прочности σв, МПаОтносительное удлинение δ, %Твёрдость HB, МПа
ПростаяЛ96, Л90Мягкое состояние240-26050HB 550
ПростаяЛ96, Л90Твёрдое состояние450-4702,5HB 1350
АлюминиеваяЛАЖ60-1-1Мягкое состояние45050HB 550
АлюминиеваяЛАЖ60-1-1Твёрдое состояние7008HB 1700
ОловянистаяЛО90-1Мягкое состояние28045HB 570
ОловянистаяЛО90-1Твёрдое состояние5204,5HB 1450
СвинцоваяЛС74-3, ЛС64-2, ЛС63-3Мягкое состояние300-40040-60HB 500-700
СвинцоваяЛС74-3, ЛС64-2, ЛС63-3Твёрдое состояние550-7002-6HB 1000-1200

Воплощение высокой химической активности алюминия в сплавах

Большинство конструкционных материалов, которые принято считать алюминиевыми, изготовлено не из чистого металла, а его деформируемых сплавов. Второй класс сплавов на основе Al составляют литейные, используемые большей частью в машиностроении.

По характеру механической и термической обработки, алюминиевые сплавы относят к нагартованным, отожженным, закаленным и состаренным (искусственно или естественно). По основному легирующему элементу, различают следующие категории:

  • Дюралюминий, Алюминиево-медный сплав, отличающийся прочностью на уровне низкоуглеродистой стали. Недостаток: материал требует защитного покрытия, в силу собственной низкой сопротивляемости коррозии. Среди дополнительных легирующих добавок используются: магний для повышения текучести; железо — жаропрочности, а также кремний;

Дюралюминий

  • Алюминиево-магниевые. Отличаются высоким уровнем сопротивления коррозии, свариваемости и вибростойкости. Для повышения прочностных характеристик дополнительно легируются марганцем, кремнием или титаном. Широко используются для фасонного литья;

Отливки из алюминиево-магниевого сплава

  • Силумин. Алюминиево-кремниевый сплав, характеризуется наилучшими литейными свойствами, поэтому целенаправленно используется для отлива корпусов различного оборудования, механизмов;

Шаровй кран из силумина

  • Алюминиево-марганцевые. Такие сплавы отличаются пластичностью, обладают высоким сопротивлением коррозии, хорошей свариваемостью;
  • Авиаль. Тройной сплав алюминия с магнием и кремнием. Отличается высочайшей пластичностью. Используется в авиационной промышленности. Последнее время с добавлением авиаля начали изготавливать корпуса мобильных телефонов.

Корпус самолета из авиационного алюминия (авиали)

Вторым вариантом сплавов с алюминием, выступают материалы, где металл используется как добавка. Ярким примером бытового применения таких алюминиевых сплавов является кухонная посуда: кастрюли, сковородки, миски и прочее; еще до недавнего времени широко распространенная среди населения.

Механические свойства деформируемых бронз

E = 92…130 ГПа.

БронзаСостояниеПредел прочности σв, МПаОтносительное удлинение δ, %Твёрдость HB, МПа
БрАМц9-2Мягкое состояние45030HB 1100
БрАМц9-2Твёрдое состояние8004HB 1800
БрАЖ9-4Мягкое состояние45040HB 1100
БрАЖ9-4Твёрдое состояние7004HB 2000

Механические свойства медно-никелевых сплавов

E = 120…145 ГПа.

НазваниеСплавСостояниеПредел прочности σв, МПаОтносительное удлинение δ, %
МельхиорМНЖМц30-0,8-1Мягкое состояние40045
МельхиорМНЖМц30-0,8-1Твёрдое состояние6004
МельхиорМН19Мягкое состояние35040
МельхиорМН19Твёрдое состояние5504
КопельМНМц43-0,5Мягкое состояние42038
КопельМНМц43-0,5Твёрдое состояние6503,5
КонстантантМНМц40-1,5Мягкое состояние43028
КонстантантМНМц40-1,5Твёрдое состояние6702,5

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64- 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8-660,2° С, температура кипения 1800-2500° С.

Для сплавов алюминия электропроводность составляет 30-50% электропроводности меди, а для чистого алюминия 62-65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784-65 и 2685-63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80-100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80-100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20-25% (исходное состояние после закалки и есте­ственного старения) до 1-2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

( 2 оценки, среднее 4 из 5 )

Литература:
  1. Мустафин Р. И., Протасова А. А., Буховец А. В., Семина И.И. Исследование интерполимерных сочетаний на основе (мет)акрилатов в качестве перспективных носителей в поликомплексных системах для гастроретентивной доставки. Фармация. 2014; 5: 3–5.
  2. Puccinotti, «Storia della medicina» (Ливорно, 1954—1959).
  3. Мирский, «Медицина России X—XX веков» (Москва, РОССПЭН, 2005, 632 с.).
  4. https://normis.com.ua/alum0.
  5. https://zpu-tmb.ru/cvetnye-metally-i-splavy/harakteristiki-alyuminievyh-splavov.html.
  6. Patil H., Tiwari R. V., Repka M. A. Recent advancements in mucoadhesive floating drug delivery systems: A mini-review. Journal of Drug Delivery Science and Technology. 2016; 31: 65–71.DOI: 10.1016/j.jddst.2015.12.002.
  7. Moustafine R. I., Bobyleva V. L., Bukhovets A. V., Garipova V. R.,Kabanova T. V., Kemenova V. A., Van den Mooter G. Structural transformations during swelling of polycomplex matrices based on countercharged (meth)acrylate copolymers (Eudragit® EPO/Eudragit® L 100-55). Journal of Pharmaceutical Sciences. 2011; 100:874–885. DOI:10.1002/jps.22320.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector