Buildingbook.ru

При расчёте на прочность деревянных конструкций необходимо знать его расчётное сопротивление. Для деревянных конструкций есть несколько типов расчётных сопротивлений: на изгиб, сжатие, смятие, скол вдоль и поперёк волокон, растяжение вдоль и поперёк волокон, сжатие и смятие поперек волокон. Вначале рассмотрим, как вычисляется расчётное сопротивление деревянных конструкций, затем рассмотрим его расчёт на примере вычисления расчётного сопротивления на изгиб для доски балки перекрытия.

Методика расчёта взята из СП 64.133330.2017, который можно скачать по этой ссылке.

Расчётное сопротивление древесины определяем по формуле 1 СП 64.13330.2017:

где RA — расчётное сопротивление древесины согласно таблицы 3 СП 64.13330.2017 в зависимости от сечения и сорта древесины

Таблица 3 СП 64.13330.2017:

Напряженное состояние и характеристика элементовРасчетное сопротивление, МПа, для сортов древесины
Обозначение123
1 Изгиб, сжатие и смятие вдоль волокон:
а) элементы прямоугольного сечения [за исключением указанных в б), в)] высотой не более 50 см. При высоте сечения более 50 см [см. 6.9в)]2119,513
б) элементы прямоугольного сечения шириной от 11 до 13 см при высоте сечения от 11 до 50 см22,52115
в) элементы прямоугольного сечения шириной более 13 см при высоте сечения от 13 до 50 см2422,516,5
г) элементы из круглых лесоматериалов без врезок в расчетном сечении2415
2 Растяжение вдоль волокон:
а) элементы из цельной древесины1510,5
б) клееные элементы1813,5
3 Сжатие и смятие по всей площади поперек волокон2,72,72,7
4 Смятие поперек волокон местное:
а) в опорных частях конструкций, лобовых врубках и узловых примыканиях элементов4,54,54,5
б) под шайбами при углах смятия от 90° до 60°666
5 Скалывание вдоль волокон:
а) при изгибе элементов из цельной древесины2,72,42,4
б) при изгибе клееных элементов2,42,252,25
в) в лобовых врубках для максимального напряжения3,63,23,2
г) местное в клеевых соединениях для максимального напряжения3,23,23,2
6 Скалывание поперек волокон в соединениях:
а) элементов из цельной древесины1,51,20,9
б) клееных элементов1,051,050,9
7 Растяжение поперек волокон элементов из клееной древесины0,230,150,12
8 Срез под углом к волокнам 45°97,56
То же 90°16,513,512
Примечания:
1 В конструкциях построечного изготовления величины расчетных сопротивлений на растяжение, принятые по пункту 2а) настоящей таблицы, следует снижать на 30%.
2 Расчетное сопротивление изгибу для элементов настила и обрешетки под кровлю из древесины 3-го сорта следует принимать равным 13 МПа.

Расчетные сопротивления для других пород древесины устанавливают путем умножения величин, приведенных в таблице 3, на переходные коэффициенты mп, указанные в таблице 5.

Таблица 5 СП 64.13330.2017

Древесная породаКоэффициент mп для расчетных сопротивлений
растяжению, изгибу, сжатию и смятию вдоль волокон RP , RИ , RС ,RСМсжатию и смятию поперек волокон RС90 , RСМ90скалыванию RСК
Хвойные
1 Лиственница, кроме европейской1,21,21
2 Кедр сибирский, кроме кедра Красноярского края0,90,90,9
3 Кедр Красноярского края0,650,650,65
4 Пихта0,80,80,8
Твердые лиственные
5 Дуб1,321,3
6 Ясень, клен, граб1,321,6
7 Акация1,52,21,8
8 Береза, бук1,11,61,3
9 Вяз, ильм11,61
Мягкие лиственные
10 Ольха, липа, осина, тополь0,810,8
Примечание — Коэффициенты mп, указанные в таблице, для конструкций опор воздушных линий электропередачи, изготавливаемых из не пропитанной антисептиками лиственницы (при влажности 25%), умножаются на коэффициент 0,85.

mДЛ — коэффициент длительной прочности, принимаемый по таблице 4 СП 64.13330.2017 в зависимости и того, для чего служит конструкция

Таблица 4 СП 64.13330.2017

Обозначение режимов нагруженияХарактеристика режимов нагруженияПриведенное расчетное время действия нагрузки, сКоэффициент длительной прочности mДЛ
АЛинейно возрастающая нагрузка при стандартных машинных испытаниях1-101,0
БСовместное действие постоянной и длительной временной нагрузок, напряжение от которых превышает 80% полного напряжения в элементах конструкций от всех нагрузок108-1090,53
ВСовместное действие постоянной и кратковременной снеговой нагрузок106-1070,66
ГСовместное действие постоянной и кратковременной ветровой и (или) монтажной нагрузок103-1040,8
ДСовместное действие постоянной и сейсмической нагрузок10-1020,92
ЕДействие импульсивных и ударных нагрузок10-1-10-81,1-1,35
ЖСовместное действие постоянной и кратковременной снеговой нагрузок в условиях пожара103-1040,8
ИДля опор воздушных линий электропередачи — гололедная, монтажная, ветровая при гололеде, от тяжения проводов при температуре ниже среднегодовой104-1050,85
КДля опор воздушных линий электропередачи — при обрыве проводов и тросов10-1-10-21,1

Пmi — произведение коэффициентов условий работ согласно п.6.9 СП 64.13330.2017. Рассмотрим все коэффициенты:

п.6.9 а) для различных условий эксплуатации конструкций — коэффициент mВ, указанный в таблице 9:

Таблица 9 СП 64.13330.2017

Условие эксплуатации (таблица 1)1А и 1234
Коэффициент mВ10,90,850,75

Условия эксплуатации указаны в таблице 1 СП 64.13330.2017

Таблица 1 СП 64.13330.2017

Класс условий эксплуатацииЭксплуатационная влажность древесины, %Максимальная относительная влажность воздуха при температуре 20°С, %
1 (сухой)Не более 840
Не более 1050
2 (нормальный)Не более 1265
3 (влажный)Не более 1575
4 (мокрый)Не более 2085
Более 20Более 85
Примечания 1 Допускается в качестве «эксплуатационной» принимать «равновесную» влажность древесины (рисунок А.1 Приложения А СП 64.13330.2017).

2 Допускается кратковременное превышение максимальной влажности в течение 2-3 нед. в году.

п.6.9 б) конструкций, эксплуатируемых при установившейся температуре воздуха ниже плюс 35°С, — коэффициент mТ=1; при температуре плюс 50°С — коэффициент mТ=0,8. Для промежуточных значений температуры коэффициент принимают по интерполяции;

п.6.9 в) изгибаемых, внецентренно сжатых, сжато-изгибаемых и сжатых клееных элементов прямоугольного сечения высотой более 50 см значения расчетных сопротивлений изгибу и сжатию вдоль волокон — коэффициент mб, указанный в таблице 10:

Таблица 10 СП 64.13330.2017

Высота сечения, см50 и менее607080100120 и более
Коэффициент mб10,960,930,900,850,8

п.6.9 г) растянутых элементов с ослаблением в расчетном сечении и изгибаемых элементов из круглых лесоматериалов с подрезкой в расчетном сечении — коэффициент mо=0,8;

п.6.9 д) элементов, подвергнутых глубокой пропитке антипиренами под давлением, — коэффициент mа=0,9;

п.6.9 е) изгибаемых, внецентренно сжатых, сжато-изгибаемых и сжатых клееных деревянных элементов, в зависимости от толщины слоев, значения расчетных сопротивлений изгибу, скалыванию и сжатию вдоль волокон — коэффициент mСД, указанный в таблице 11:

Таблица 11 СП 64.13330.2017

Толщина слоя, мм10 и менее19263342
Коэффициент mСД1,21,11,051,00,95

п.6.9 ж) гнутых элементов конструкций значения расчетных сопротивлений растяжению, сжатию и изгибу — коэффициент mГН, указанный в таблице 12:

Таблица 12 СП 64.13330.2017

Напряженное состояниеОбозначение расчетных сопротивленийКоэффициент mГН при отношении rK/a
150200250500 и более
Сжатие и изгибRc, Rи0,80,911
Растяжение0,60,70,81
Примечание — rK — радиус кривизны гнутой доски или бруска; a — толщина гнутой доски или бруска в радиальном направлении.

п. 6.9 и) в зависимости от срока службы — коэффициент mc.c, указанный в таблице 13:

Таблица 13 СП 64.13330.2017

Вид напряженного состоянияЗначение коэффициента mc.c при сроке службы сооружения
≤50 лет75 лет100 лет и более
Изгиб, сжатие, смятие вдоль и поперек волокон древесины1,00,90,8
Растяжение и скалывание вдоль волокон древесины1,00,850,7
Растяжение поперек волокон древесины1,00,80,5
Примечание — Значение коэффициента mc.c для промежуточных сроков службы сооружения принимаются по линейной интерполяции.

п. 6.9 к) для смятия поперек волокон при режимах нагружения Г-К (таблица 4, приведена выше) — коэффициент mcм=1,15.

Пример расчёта расчётного сопротивления

Для примера рассмотрим расчёт расчётного сопротивления на изгиб для балки из доски сечением 50х200 из сосны 1-го сорта.

RAИ=21 МПа (п.1а таблицы 30)

mДЛ =0,53 (режим Б таблицы 4)

mв=0,9 коэффициент для условий эксплуатации подбирается по таблице 9 СП 64.13330.2017 согласно условиям эксплуатации по таблице 1 СП 64.13330.2017. При влажности воздуха до 65% (для жилых помещений) данный коэффициент равен 0,9

mT =1- коэффициент условий работы при температуре эксплуатации для температуры ниже +35°С равен единице.

mб =1 коэффициент условий работы в зависимости от высоты сечения при высоте сечения ниже 50 см равен 1.

mо — не применяется т.к. наша конструкция не относится к ситуациям п.6.9 г.

mа- не применяется т.к. доску мы не пропитываем антипиренами;

mСД — не применяется т.к. данный коэффициент используется для клееных элементов;

mГН — не применяется т.к. данный коэффициент используется для гнутых элементов;

mc.c =1 коэффициент условий работы для срока службы менее 50 лет. Срок службы здания регламентирован ГОСТ 27751-2014 Надежность строительных конструкций и оснований Таблица 1. Для здания и сооружений массового строительства в обычных условиях эксплуатации (здания жилищно-гражданского и производственного строительства) принимается не менее 50 лет.

mcм — не применяется т.к. в нашем случае режим нагружения будет Б.

Итого Пmi равен:

Пmi= mв*mT*mб*mc.c =0,9*1*1*1=0,9

Вычисляем расчётное сопротивление изгибу:

Rи=RAИ *mДЛ*Пmi=21*0,53*0,9=10,017 МПа

Сайт инженера-проектировщика

Вернуться на страницу»Расчеты КК и ДК»

Расчетные характеристики материалов

Согласно СП 64.13330.2011:

3.1 Расчетные сопротивления древесины сосны (кроме веймутовой), ели, лиственницы европейской и японской приведены в таблице 3. Расчетные сопротивления для других пород древесины устанавливают путем умножения величин, приведенных в таблице 3, на переходные коэффициенты тп, указанные в таблице 4.

Методика определения расчетных сопротивлений приведена в приложении Б.

Таблица 3

Напряженное состояние и характеристика элементовРасчетные сопротивления, МПа(кгс/см2), для сортов (классов) древесины
обозначение1/К262/К243/К16
1. Изгиб, сжатие и смятие вдоль волокон:
а) элементы прямоугольного сечения (за исключением указанных в подпунктах «б», «в») высотой до 50 см. При высоте сечения более 50 см см. п. 3.2,д текстаRи, Rс, Rсм14 (140)13 (130)8,5 (85)
б) элементы прямоугольного сечения шириной свыше 11 до 13 см при высоте сечения свыше 11 до 50 смRи, Rс, Rсм15 (150)14 (140)10 (100)
в) элементы прямоугольного сечения шириной свыше 13 см при высоте сечения свыше 13 до 50 смRи, Rс, Rсм16 (160)15 (150)11 (110)
г) элементы из круглых лесоматериалов без врезок в расчетном сеченииRи, Rс, Rсм16 (160)10 (100)
2. Растяжение вдоль волокон:
а) неклееные элементы10 (100)7 (70)
б) клееные элементы12 (120)9 (90)
3. Сжатие и смятие по всей площади поперек волоконRс90, Rсм901,8 (18)1,8 (18)1,8 (18)
4. Смятие поперек волокон местное:
а) в опорных частях конструкций, лобовых врубках и узловых примыканиях элементовRсм903 (30)3 (30)3 (30)
б) под шайбами при углах смятия от 90 до 60°Rсм904 (40)4 (40)4 (40)
5. Скалывание вдоль волокон:
а) при изгибе неклееных элементовRск1,8 (18)1,6 (16)1,6 (16)
б) при изгибе клееных элементовRск1,6 (16)1,5 (15)1,5 (15)
в) в лобовых врубках для максимального напряженияRск2,4 (24)2,1 (21)2,1 (21)
г) местное в клеевых соединениях для максимального напряженияRск2,1 (21)2,1 (21)2,1 (21)
6. Скалывание поперек волокон:
а) в соединениях неклееных элементовRск901 (10)0,8 (8)0,6 (6)
б) в соединениях клееных элементовRск900,7 (7))0,7 (7)0,6 (6)
7. Растяжение поперек волокон элементов из клееной древесиныRр900,35 (3,5)0,3 (3)0,25 (2,5)
Примечания

1 Расчетное сопротивление древесины местному смятию поперек волокон на части длины (при длине незагруженных участков не менее длины площадки смятия и толщины элементов), за исключением случаев, оговоренных в поз. 4 данной таблицы, определяется по формуле

, (1)

где Rс90 — расчетное сопротивление древесины сжатию и смятию по всей поверхности поперек волокон (поз. 3 данной таблицы);

lсм — длина площадки смятия вдоль волокон древесины см.

2 Расчетное сопротивление древесины смятию под углом a к направлению волокон определяется по формуле

. (2)

3 Расчетное сопротивление древесины скалыванию под углом к направлению волокон определяется по формуле

. (3)

4 В конструкциях построечного изготовления величины расчетных сопротивлений на растяжение, принятые по поз. 2,а данной таблицы, следует снижать на 30 %.

5 Расчетное сопротивление изгибу для элементов настила и обрешетки под кровлю из древесины 3-го сорта следует принимать равным 13 МПа (130 кгс/см2).

Таблица 4

Древесные породыКоэффициент тп для расчетных сопротивлений
растяжению, изгибу, сжатию и смятию вдоль волокон Rр, Rи, Rc, Rсмсжатию и смятию поперек волокон Rс90, Rсм90скалыванию Rск
Хвойные
1. Лиственница, кроме европейской и японской1,21,21
2. Кедр сибирский, кроме кедра Красноярского края0,90,90,9
3. Кедр Красноярского края, сосна веймутова0,650,650,65
4. Пихта0,80,80,8
Твердые лиственные
5. Дуб1,321,3
6. Ясень, клен, граб1,321,6
7. Акация1,52,21,8
8. Береза, бук1,11,61,3
9. Вяз, ильм11,61
Мягкие лиственные
10. Ольха, липа, осина, тополь0,810,8
Примечание. Коэффициенты тп, указанные в таблице, для конструкций опор воздушных линий электропередачи, изготавливаемых из не пропитанной антисептиками лиственницы (при влажности ≤ 25 %), умножаются на коэффициент 0,85.

3.2 Расчетные сопротивления, приведенные в таблице 3, следует умножать на коэффициенты условий работы:

а) для различных условий эксплуатации конструкций — на коэффициент тв, указанный в таблице 5;

б) для конструкций, эксплуатируемых при установившейся температуре воздуха до +35 °С, — на коэффициент тт = 1; при температуре +50 °С — на коэффициент тт = 0,8. Для промежуточных значений температуры коэффициент принимается по интерполяции;

в) для конструкций, в которых напряжения в элементах, возникающие от постоянных и временных длительных нагрузок, превышают 80 % суммарного напряжения от всех нагрузок, — на коэффициент тд = 0,8;

г) для конструкций, рассчитываемых с учетом воздействия кратковременных (ветровой, монтажной или гололедной) нагрузок, а также нагрузок от тяжения и обрыва проводов воздушных ЛЭП и сейсмической, — на коэффициент тн, указанный в таблице 6;

д) для изгибаемых, внецентренно-сжатых, сжато-изгибаемых и сжатых клееных элементов прямоугольного сечения высотой более 50 см значения расчетных сопротивлений изгибу и сжатию вдоль волокон — на коэффициент тб, указанный в таблице 7;

е) для растянутых элементов с ослаблением в расчетном сечении и изгибаемых элементов из круглых лесоматериалов с подрезкой в расчетном сечении — на коэффициент то = 0,8;

ж) для элементов, подвергнутых глубокой пропитке антипиренами под давлением, — на коэффициент та = 0,9;

и) для изгибаемых, внецентренно-сжатых, сжато-изгибаемых и сжатых клееных элементов, в зависимости от толщины слоев, значения расчетных сопротивлений изгибу, скалыванию и сжатию вдоль волокон — на коэффициент тсл, указанный в таблице 8;

к) для гнутых элементов конструкций значения расчетных сопротивлений растяжению, сжатию и изгибу — на коэффициент тгн, указанный в таблице 9.

Справочник | Лесоматериалы | Деревянное строительство

К механическим свойствам древесины относятся: прочность, твёрдость, жёсткость, ударная вязкость и другие.

Прочность — способность древесины сопротивляться разрушению от механических усилий, характеризующихся пределом прочности. Прочность древесины зависит от направления действия нагрузки, породы дерева, плотности, влажности, наличия пороков.

Существенное влияние на прочность древесины оказывает только связанная влага, содержащаяся в клеточных оболочках. При увеличении количества связанной влаги прочность древесины уменьшается (особенно при влажности 20-25%). Дальнейшее повышение влажности за предел гигроскопичности (30%) не оказывает влияния на показатели прочности древесины. Показатели пределов прочности можно сравнивать только при одинаковой влажности древесины. Кроме влажности на показатели механических свойств древесины оказывает влияние и продолжительность действия нагрузок.

Вертикальные статические нагрузки — это постоянные или медленно возрастающие. Динамические нагрузки, наоборот, действуют кратковременно. Нагрузку, разрушающую структуру древесины, называют разрушительной. Прочность, граничащую с разрушением, называют пределом прочности древесины, её определяют и измеряют образцами древесины. Прочность древесины измеряют в Па/см2 (кгс на 1 см2) поперечного сечения образца в месте разрушения, (Па/см2 (кг с/см2).

Сопротивление древесины определяют как вдоль волокон, так и в радиальном и тангенциальном направлении. Различают основные виды действий сил: растяжение, сжатие, изгиб, скалывание. Прочность зависит от направления действия сил, породы дерева, плотности древесины, влажности и наличия пороков. Механические свойства древесины приведены в таблицах.

Чаще всего древесина работает на сжатие, например, стойки и опоры. Сжатие вдоль волокон действует в радиальном и тангенциальном направлении (рис. 1).

Предел прочности на растяжение. Средняя величина предела прочности при растяжении вдоль волокон для всех пород составляет 1300 кгс/см2. На прочность при растяжении вдоль волокон оказывает большое влияние строение древесины. Даже небольшое отклонение от правильного расположения волокон вызывает снижение прочности.

Прочность древесины при растяжении поперёк волокон очень мала и в среднем составляет 1/20 часть от предела прочности при растяжении вдоль волокон, то есть 65 кгс/см2. Поэтому древесина почти не применяется в деталях, работающих на растяжение поперёк волокон. Прочность древесины на растяжение поперёк волокон имеет значение при разработке режимов резания и режимов сушки древесины.

Рис. 1. Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Предел прочности при сжатии. Различают сжатие вдоль и поперёк волокон. При сжатии вдоль волокон деформация выражается в небольшом укорочении образца. Разрушение при сжатии начинается с продольного изгиба отдельных волокон, которое во влажных образцах из мягких и вязких пород проявляется как смятие торцов и выпучивание боков, а в сухих образцах и в твёрдой древесине вызывает сдвиг одной части образца относительно другой.

Средняя величина предела прочности при сжатии вдоль волокон для всех пород составляет 500 кгс/см2.

Прочность древесины при сжатии поперёк волокон ниже, чем вдоль волокон примерно в 8 раз. При сжатии поперёк волокон не всегда можно точно установить момент разрушения древесины и определить величину разрушающего груза.

Древесину испытывают на сжатие поперёк волокон в радиальном и тангенциальном направлениях. У лиственных пород с широкими сердцевинными лучами (дуб, бук, граб) прочность при радиальном сжатии выше в полтора раза, чем при тангенциальном; у хвойных — наоборот, прочность выше при тангенциальном сжатии.

Рис. 2. Испытание механических свойств древесины на изгиб.

Предел прочности при статическом изгибе. При изгибе, особенно при сосредоточенных нагрузках, верхние слои древесины испытывают напряжение сжатия, а нижние — растяжения вдоль волокон. Примерно посередине высоты элемента проходит плоскость, в которой нет ни напряжения сжатия, ни напряжения растяжения. Эту плоскость называют нейтральной; в ней возникают максимальные касательные напряжения. Предел прочности при сжатии меньше, чем при растяжении, поэтому разрушение начинается в сжатой зоне. Видимое разрушение начинается в растянутой зоне и выражается в разрыве крайних волокон. Предел прочности древесины зависит от породы и влажности. В среднем для всех пород прочность при изгибе составляет 1000 кгс/см2, то есть в 2 раза больше предела прочности при сжатии вдоль волокон.

Прочность древесины при сдвиге. Внешние силы, вызывающие перемещение одной части детали по отношению к другой, называют сдвигом. Различают три случая сдвига: скалывание вдоль волокон, поперёк волокон и перерезание.

Прочность при скалывании вдоль волокон составляет 1/5 часть от прочности при сжатии вдоль волокон. У лиственных пород, имеющих широкие сердцевинные лучи (бук, дуб, граб), прочность на скалывание по тангенциальной плоскости на 10-30% выше, чем по радиальной.

Предел прочности при скалывании поперёк волокон примерно в два раза меньше предела прочности при скалывании вдоль волокон. Прочность древесины при перерезании поперёк волокон в четыре раза выше прочности при скалывании.

Рис. 5. Направление сил в деревянной конструкции, находящейся под нагрузкой: 1 — сдвиг на скалывание; 2 — сжатие; 3 — растяжение; 4 — изгиб; 5 — сжатие.

Твёрдость — это свойство древесины сопротивляться внедрению тела определённой формы. Твёрдость торцовой поверхности выше твёрдости боковой поверхности (тангенциальной и радиальной) на 30% у лиственных пород и на 40% у хвойных. По степени твёрдости все древесные породы можно разделить на три группы: 1) мягкие — торцовая твёрдость 40 МПа и менее (сосна, ель, кедр, пихта, можжевельник, тополь, липа, осина, ольха, каштан); 2) твёрдые — торцовая твёрдость 40,1-80 МПа (лиственница, сибирская берёза, бук, дуб, вяз, ильм, карагач, платан, рябина, клён, лещина, орех грецкий, хурма, яблоня, ясень); 3) очень твёрдые — торцовая твёрдость более 80 МПа (акация белая, берёза железная, граб, кизил, самшит, фисташки, тис).

Твёрдость древесины имеет существенное значение при обработке её режущими инструментами: фрезеровании, пилении, лущении, а также в тех случаях, когда она подвергается истиранию при устройстве полов, лестниц перил.

Твёрдость древесины

Эбеновое дерево

Свыше 8,0

Бук

3,8

Акация белая

7,1

Дуб

3,8

Олива

6

Падук

3,8

Ярра

6

Афромозия

3,7

Кумару

5,9

Граб

3,7

Лапачо

5,7

Вяз гладкий

3,67

Амарант

5

Берёза

3,6

Орех грецкий

5

Тиковое дерево

3,5

Кемпас

4,9

Ирокко (камбала)

3,5

Бамбук

4,7

Вишня

3,2

Панга-панга

4,4

Ольха

2,7

Венге

4,2

Лиственница

2,6

Гуатамбу

4,2

Клён полевой

2,5

Клен остролистый

4,1

Сосна

2,49

Ясень

4,1

Сосна корейская

1,9

Мербау

4,1

Осина

1,86

Сукупира

4,1

Кумьер

твёрдая

Ятоба (мерил)

4,1

Груша

средняя

Свитения (махагони)

4

Сапелли

средняя

Дуссие

4

Липа

низкая

Мутения

4

Каштан

низкая

Порода дереваТвердость, МПа (кгс/см2)
для поверхности поперечного разрезадля поверхности радиального разрезадля поверхности тангенциального разреза
Липа19,0(190)16,4(164)16,4(164)
Ель22,4(224)18,2(182)18,4(184)
Осина24,7(247)17,8(178)18,4(184)
Сосна27,0(270)24,4(244)26,2(262)
Лиственница37,7(377)28,0(280)27,8(278)
Береза39,2(392)29,8(298)29,8(298)
Бук57,1 (571)37,9(379)40,2(402)
Дуб62,2(622)52,1(521)46,3(463)
Граб83,5(835)61,5(615)63,5(635)

Ударная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород. Ударную твёрдость определяют, сбрасывая стальной шарик диаметром 25 мм с высоты 0,5 м на поверхность образца, величина которого тем больше, чем меньше твёрдость древесины.

Износостойкость — способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

Способность древесины удерживать металлические крепления: гвозди, шурупы, скобы, костыли и др. — важное её свойство. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя. Усилие, необходимое для выдёргивания гвоздя, забитого в торец образца, меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон. С повышением плотности сопротивление древесины выдергиванию гвоздя или шурупа увеличивается. Усилия, необходимые для выдёргивания шурупов (при прочих равных условиях), больше, чем для выдёргивания гвоздей, так как в этом случае к трению присоединяется сопротивление волокон перерезанию и разрыву.

Основные технические свойства различных древесных пород

Порода дереваКоэффициент усушки, %Механическая прочность для древесины с 15 %-ной влажностью, МПа (кгс/см2)
в радиальном направлениив тангенциальном направлениина сжатие вдоль волоконна изгибскалывание
в радиальной плоскостив тангециальной плоскости
Хвойные древесные породы
Сосна0,180,3343,979,36,9(68)7,3(73)
Ель0,140,2442,374,45,3(53)5,2(52)
Лиственница0,220,4051,197,38,3(83)7,2(72)
Пихта0,90,3333,751,94,7(47)5,3(53)
Твердолиственные древесные породы
Дуб0,180,2852,093,58,5(85)10,4(104)
Ясень0,190,3051,011513,8(138)13,3(133)
Береза0,260,3144,799,78,5(85)11(110)
Клен0,210,3454,0109,78,7(87)12,4(124)
Ильм0,220,4448,6105,713,8(138)
Вяз0,150,3238,985,27(70)7,7(77)
Мягколиственные древесные породы
Осина0,20,3237,476,65,7(57)7,7(77)
Липа0,260,3939687,3(73)8(80)
Черная ольха0,160,2336,869,2
Черная осина0,160,3135,1605,8(58)7,4(74)

Нормативная сопротивляемость чистой древесины сосны и ели

Вид сопротивления и характеристика элементов, находящихся под нагрузкойМПа (кгс/см2)
Сопротивление статическому изгибу Rt :
  • для элементов, изготовленных из круглого леса с неослабленным поперечным сечением
16(160)
  • для элементов с прямоугольным сечением (ширина 14 см, высота — 50 см)
15(150)
  • для остальных элементов
13(130)
Сопротивляемость сжатию Rсж и поверхностному сжатию Rп.сж:
  • Rп.сж вдоль волокон
13(130)
  • в плоскости, параллельной направлению волокон Rп.сж.пл
1,8(18)
Сопротивление сжатию местной поверхности Rп.сж:
  • поперек волокон в опорных местах конструкции
2,4 (24)
  • в опорных зарубках
3(30)
  • под металлическими подкладками (если углы приложения силы 90…60°)
4(40)
Сопротивляемость растяжению вдоль волокон Rраст.в :
  • для элементов с неослабленным поперечным сечением
10(100)
  • для элементов с ослабленным поперечным сечением
8(80)
Сопротивляемость раскалыванию вдоль волокон Rраск.в2,4(24)
Сопротивляемость раскалыванию поперек Rраск.в волокон1,2(12)

Средние показатели сопротивления древесины выдергиванию гвоздей

Порода древесины

Плотность, кг/м3

Размеры гвоздей, мм

оцинкованных

не оцинкованных

1,2 х 25

1,6 х 25

2 х 4

Средние показатели сопротивления в направлениях

радиальном

тангенциальном

радиальном

тангенциальном

радиальном

тангенциальном

Сосна

500

38

27

19

23

35

29

Ель

445

33

28

23

18

37

Лиственница

660

48

39

27

25

39

34

Дуб

690

57

55

39

39

64

65

Бук

670

57

58

41

48

65

79

Усилие, необходимое для выдергивания гвоздя, забитого в торец, на 10-15% меньше усилия, прилагаемого к гвоздю, забитому поперёк волокон.

Способность древесины изгибаться позволяет гнуть её. Способность гнуться выше у кольцесосудистых пород — дуба, ясеня и др., а из рассеянно-сосудистых — бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.

Раскалывание древесины имеет практическое значение, так как некоторые сортименты её заготовляют раскалыванием (клёпка, обод, спицы, дрань). Сопротивление раскалыванию по радиальной плоскости у древесины лиственных пород меньше, чем по тангенциальной. Это объясняется влиянием сердцевинных лучей (у дуба, бука, граба). У хвойных, наоборот, раскалывание, по тангенциальной плоскости меньше, чем по радиальной.

Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности — модуль упругости.

Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жёсткая древесина.

С увеличением содержания связанной воды и температуры древесины, жёсткость её снижается. В нагруженной древесине при высыхании или охлаждении часть упругих деформаций преобразуется в «замороженные» остаточные деформации. Они исчезают при нагревании или увлажнении.

Поскольку древесина состоит в основном из полимеров с длинными гибкими цепными молекулами, её деформативность зависит от продолжительности воздействия нагрузок. Механические свойства древесины, как и других полимеров, изучаются на базе общей науки реологии. Эта наука рассматривает общие законы деформирования материалов под воздействием нагрузки с учётом фактора времени.

Литература:
  1. Харенко Е. А., Ларионова Н. И., Демина Н. Б. Мукоадгезивные лекарственные формы. Химико-фармацевтический журнал. 2009; 43(4): 21–29. DOI: 10.30906/0023-1134-2009-43-4-21-29.
  2. М.П. Киселева, З.С. Шпрах, Л.М. Борисова и др. Доклиническое изучение противоопухолевой активности производного N-гликозида индолокарбазола ЛХС-1208. Сообщение II // Российский биотерапевтический журнал. 2015. № 3. С. 41-47.
  3. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Доклиническое изучение противоопухолевой активности производного индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. № 1. С. 129.
  4. https://buildingbook.ru/rasch-sopr-dereva.html.
  5. https://saitinpro.ru/glavnaya/raschety/raschety-kk-dk/soprotivlenie-drevesiny/.
  6. https://les.novosibdom.ru/node/1.
  7. А.В. Ланцова, Е.В. Санарова, Н.А. Оборотова и др. Разработка технологии получения инъекционной лекарственной формы на основе отечественной субстанции производной индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. Т. 13. № 3. С. 25-32.
  8. Мустафин Р. И., Протасова А. А., Буховец А. В., Семина И.И. Исследование интерполимерных сочетаний на основе (мет)акрилатов в качестве перспективных носителей в поликомплексных системах для гастроретентивной доставки. Фармация. 2014; 5: 3–5.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector