Энциклопедия по машиностроению XXL

Динамометры пружинные растяжения  [c.849]

Для статического измерения сил служат известные из курса физики приборы, называемые динамометрами. Главную часть этих приборов составляет градуированная пружина. Принцип действия динамометра основан на том, что до известных пределов деформация пружины (растяжение или сжатие) пропорциональна силе, ее вызывающей, и исчезает по прекращении действия этой силы. При этом о модуле силы, приложенной к пружине, судят по величине растяжения или сжатия пружины. Такой способ измерения модуля силы основан, таким образом, на равновесии между приложенной силой, модуль которой измеряется, и силой упругости, развиваемой пружиной динамометра. Поэтому этот способ измерения модуля силы можно назвать статическим. Другой, динамический, способ измерения модуля силы будет указан в динамике .  [c.21]

Первой системой мер, принятой для измерения силы, были меры веса. Это было вызвано тем, что первое представление о силе у человека возникло в связи с тем усилием, которое он должен был приложить, чтобы удержать груз рукой. Сравнение сил с весом может быть осуществлено при помощи динамометра, сравнивающего растяжение пружины силой с растяжением той же пружины подвешенным грузом. При таком измерении при помощи упругих деформаций две силы оказываются равными, если они производят одинаковые деформации или если их действия взаимно уничтожаются, когда эти силы заставляют действовать на одну п ту же точку по одной прямой, но в противоположные стороны.  [c.117]

Силы трения покоя. Прикрепим к бруску крючок динамометра и попытаемся привести брусок в движение. Растяжение пружины динамометра показывает, что на брусок действует сила упругости, но тем не менее брусок остается неподвижным. Это значит, что при действии на брусок силы упругости в направлении, параллельном поверхности соприкосновения бруска со столом, возникает равная ей по модулю сила противоположного направления. Сила, возникающая на  [c.29]

Подвесим на крючок пружинного динамометра П-образ-ную проволоку. Длина стороны АВ равна Z. Начальное растяжение пружины динамометра под действием силы тяжести проволоки можно исключить из рассмотрения установкой нулевого деления шкалы против указателя действующей силы.  [c.83]

Например, изучая упругие силы, можно установить, что растянутая цилиндрическая пружина создает силу, которая при не слишком больших растяжениях пружины пропорциональна величине растяжения. Это упрощает калибровку динамометров, так как достаточно отметить только растяжение, соответствующее наибольшей силе (не выходящей за указанные выше пределы), и всю шкалу динамометра разделить на равные части. Точно так же и для любых других типов деформации можно установить зависимость величины возникшей упругой силы от характера и величины деформации. Аналогично можно измерять и силы трения. Если к движущемуся телу прикрепить динамометр и установить то растяжение динамометра, при котором тело будет двигаться прямолинейно и равномерно, то сила трения будет равна по величине и противоположна по направлению силе, действующей со стороны динамометра (конечно, при условии, что никакие другие силы на тело не действуют).  [c.76]

ПРУЖИННЫЕ ДИНАМОМЕТРЫ РАСТЯЖЕНИЯ ОБЩЕГО НАЗНАЧЕНИЯ  [c.530]

Машина состоит из вертикально расположенной станины в виде двух стоек и жесткой поперечины, механизмов нагружения, измерения удлинения и усилия, а также механизма записи диаграммы растяжения. Испытуемый образец 7, закрепленный в захватах, помещается в ванночке, заполненной средой, в которой проводится испытание. Нижний захват может поступательно перемещаться с постоянной скоростью 1,85 мм/мин. Привод машины осуществляется от двигателя 1 через редуктор. Верхний захват соединен с помощью шарнирной опоры с динамометром (плоская пружина или упругое кольцо). Прогиб пружины измеряется индикатором 6 и реохордом  [c.166]

Машина для испытания листовой стали на выдавливание Прибор для испытания проволоки, и листов на перегиб Машина для испытания пружин на сжатие и растяжение Машина для испытания пружин на сжатие и растяжение Машина для деления образцов Динамометр грузовой образцовый 3-го класса  [c.181]

ПРУЖИННЫЕ ДИНАМОМЕТРЫ РАСТЯЖЕНИЯ ОБЩЕГО НАЗНАЧЕНИЯ (по ГОСТ 13837-79)  [c.840]

Рис. 74. Приспособление для реализации ударного растяжения с возможным размещением датчиков нагрузки 1 — молот 2 — захват 3 — траверса поперечная 4 — пружина 5 — кольцо 6 — образец 7 — захват 8 — тензодатчики 9 — динамометр ю опоры ii — гайка сферическая.

Пользуясь этим способом сравнения разных сил, а также тем, что пружины при разных растяжениях создают разные силы, можно прокалибровать одну пружину и сравнивать с ней все другие силы, т. е. можно создать так называемый динамометр, о котором мы расскажем в 63.  [c.119]

Примером простейшего динамометра служат обыкновенные пружинные весы. Принцип действия так ого дина мометра основан на том, что до известных пределов де формация (растяжение) пружины пропорциональна силе ее вызывающей, и исчезает по прекращении действия силы  [c.21]

В технической системе единиц принимается килограмм, и численное значение каждой силы выражается, следовательно, в килограммах. При статическом способе измерения сил применяют специальные приборы, называемые динамометрами (силомерами). Примером простейшего из них могут служить обыкновенные пружинные весы, принцип действия которых основав на деформации (сжатии или растяжении) пружины, принимая во внимание, что при действии равных сил пружина получает равные удлинения или сжатия ).  [c.36]

Изучение влияния растягивающих напряжений. При отсутствии в лаборатории специальных машин для растяжения металлов эту работу можно провести на самодельной установке, изготовленной из обычного штатива с тарированной пружиной (лучше с динамометром) или с грузом на тросике, перекинутом через блок.  [c.52]

На рис. 33 изображена кинематическая схема пружинного динамометра, являющегося прибором прямого действия. При растяжении кольцевого чувствительного элемента измеряемой силой он деформируется. Линейное перемещение закрепленного на нем шарнира увеличивается рычажно-зубчатым механизмом и преобразуется в угол поворота стрелки, которая отмечает на шкале значение измеряемой силы.  [c.175]

В процессе нагружения растягиваемый образец и машину можно рассматривать как две последовательно соединенные пружины различной жесткости, при этом от начала нагружения до разрушения образца части машины деформируются упруго, а в образце при переходе за предел упругости, наряду с упругой, протекает также пластическая деформация. Характер процесса пластической деформации определяется свойствами испытуемого материала. Например, для некоторых материалов характерен так называемый зуб текучести (рис. 2). Для пластичных материалов характерен спад нагрузки за максимумом, например при растяжении, когда происходит образование шейки на образце. Силоизмерительное устройство машины должно зафиксировать названные выше процессы. Для того чтобы зафиксировать действительные процессы изменения нагрузки в связи с деформацией материала, машина должна быть достаточно жесткой, а силоизмерительное устройство малоинерционным, при этом необходимо учитывать соотношение величин жесткости машины и образца. Жесткость машины практически не оказывает влияния на характеристики, определяемые в упругой области при измерении силы тарированным динамометром. Процесс упругой деформации успевает полностью произойти в момент приложения нагрузки как в частях машины, так и в образце. При этом в любой момент нагружения система машина — образец  [c.20]

Микромашина ММ-ОЗВ служит для испытания образцов диаметром до 3 мм на растяжение при температурах до 1200° С в вакууме или в среде инертного газа [10]. Образец закрепляется одним концом в неподвижной головке, а другим к динамометрической пружине ходового винта. Сменные пружины — динамометры с усилием — 500, 1500 и 3000 к. Растягивающее усилие отмечается индикатором. Запись диаграммы деформации производится по фотооптической схеме.  [c.170]

Для кратковременных испытаний на кручение при высоких температурах сталей для труб в НИТИ применяют весьма простую установку на базе обычного токарного станка (рис. 158) [22]. На супорте станка укреплена трубчатая печь 2. Задний патрон 3 с зажатым образцом 1 соединен с динамометром, измеряю-ш им скручивающее усилие, и с автоматическим самописцем. Образец может при нагреве свободно расширяться, благодаря компенсационной пружине 9. Динамометр состоит из сектора 4, сгибаемого стальной лентой, один конец которой соединен с градуированной пружиной 5. Растяжение пружины, пропорциональное скручивающему усилию, передается перу II регистрирующего прибора, барабанчик которого 10 вращается с определенной скоростью от моторчика Уоррена 12. На диаграмме записывается кривая в координатах напряжение — время скручивания образца (до его разрушения).  [c.199]

В пружинных динамометрах роль упругого рабочего элемента выполняет витая пружина, работающая на сжатие или растяжение и связанная с резцедержателем рычажной передачей. Типичным примером такого прибора является токарный динамометр конструкции Т. И. Тихонова (фиг. 4).  [c.13]

Принципиально так же можно измерять силы, обусловленные действием полей (гравитационного, электрического и магнитного). Например, общеизвестный метод взвешивания тел на пружинных весах позволяет измерить притяжения этих тел Землей (правда, только приближенно, так как Земля, на которой покоится тело при взвешивании, движется относительйо выбранной неподвижной системы координат и это несколько искажает результаты измерений). Точно так же при помощи динамометров можно измерять силы взаимодействия между неподвижными электрическими зарядами, прикрепив к двум заряженным телам динамометры и подобрав растяжение динамометров так, чтобы тела покоились. Эти же измерения позволяют определять величину зарядов (по силам взаимодействия зарядов) и установить единицу электрического заряда в системе GSE. Наконец, при помощи динамометров можно измерять силы взаимодействия между электрическими токами, текущими в жестких отрезках проводов. Для этого нужно прикрепить динамометры к жестким отрезкам проводов  [c.76]

Самый простой динамометр состоит из спиральной пружины, один конец которой закреплен, а другой свободен. Свободный конец перемещается перед градуированной шкалой, когда пружина растягивается. К свободному концу пружины подвешивают грузы в кг, 2 кг,… и отмечают на шкале соответствующие деформации. Чтобы измерить величину какой-нибуль силы, ее заставляют действовать на конец пружины (предполагается, что этот опыт можно выполнить) и читают на шкале соответствующее растяжение. Значение силы получают в килограммах.  [c.130]

Остановимся еще на одноц явлении-релаксации напряжений, которая характеризуется уменьшением напряжений при постоянной деформации. Например, она наблюдается в болтовых соединениях, когда усилие затяжки и, следовательно, плотность соединения со временем уменьшаются. Релаксацию напряжений (усилий) можно проиллюстрировать простой схемой (рис. 3.26), на которой между двумя неподвижными плоскостями помещена пружина с динамометром, показывающим усилие растяжения. Если материал пружины обладает свойством релаксации, то показания на динамометре уменьшаются. Это можно изобразить графиком зависимости напряжений от времени — кривой релаксации (рис. 3.27). Начальное напряжение а о создается в короткий промежуток времени при некотором фиксированном перемещении 5 крюка динамометра до опоры. Затем напряжение (усилие) уменьшается сначала быстро, а затем с затуханием, приближаясь асимптотически  [c.65]

Рассмотрим методику испытания и устройство для ее реализации. Конструкция приспособления, для реализации ударного растяжения цилиндрического образца с кольцевой трещиной показана на рис. 80 и состоит из следующих узлов [97] молота двух захватов 2 и 7, поперечной траверсы 5, цилиндрической пружины 4, кольца 5 и сферической гайки S. Образец б крепится с помощью захватов в отверстии, высверленном в корпусе молота. Для устранения перекосов и с целью самоцентровки образца захваты устанавливаются с некоторыми зазорами и предусмотрены сферические поверхности захватов. Образец с захватом 2 вставляют со стороны прорези молота в отверстие и закрепляют сферическим захватом 7. Между захватом 7 и корпусом молота может помещаться динамометр 9 (см. рис. 74), дающий возможность измерять нагрузку при ударном разрушении образца. В процессе пролета молота поперечная траверса ударяется об опоры копра, образец разрушается, а на шкале копра фиксируется работа, затраченная на его разрушение. Если подсоединить датчик нагрузки к электронно-осциллографической аппаратуре, можно измерить разрушающую нагрузку при ударном разрушении образца (см. параграф 1 настоящей главы).  [c.173]

На рис. 1 и в табл. 2 приведены схема и характеристики установки ДРП-361Э для испытания на растяжение с кручением шпилек (рис. 2) [7]. В установке осуществлен принцип подгружаемой системы. Нагружение образца производится от электропривода. Испытуемый образец 1 (шпилька) одним резьбовым концом ввинчивается до упора в динамометрический стакан 2, который получает вращательное движение от червячного колеса 3 электропривода. Вращательное движение передается образцу, второй резьбовой конец которого ввертывается в составную гайку 4, жестко закрепленную в подвижном буфере 5 испытательной установки. Между подвижным буфером и основанием установки устанавливается сменный пакет пружин 6 требуемой податливости или жесткий блок. В процессе испытания гайка навертывается на резьбовой конец образца и опускается, благодаря чему подвижной буфер сжимает пакет пружин. На обр азец передается от сжатых лружи1Г осевое усилие и крутящий момент от трения в резьбовой, паре шпилька — гайка. Усилие осадки пружин передается через образец на динамометр 2, на котором наклеены тензодатчики сопротивления 7, регистрирующие величину осевого усилия и крутящего момента. Удлинение образца в процессе испытания измеряется тензометрическим индикатором 8, мерительная ножка которого получает перемещение от стержня, опирающегося на верхний шлифованный торец образца.  [c.204]

Мало еще разработано средств, специально предназначенных для испытания весьма малых образцов на механическую и термическую усталость. Установка, предназначенная для испытания микрообразцов на выносливость в жидких средах при переменных напряжениях, описана в работе [18]. Предварительное статическое растягивающее усилие на образец передается грузом, а переменное — вибратором при вращении неуравновешенной массы. Суммарная нагрузка измеряется кольцевым динамометром с наклеенными датчиками сопротивления, подключенными в измерительную схему. Создана установка для усталостных испытаний малогабаритных образцов на растяжение с постоянной амплитудой напряжения [14] при температурах от -196 до 600° С. Нагружение осуществляется кривошипно-шатунным механизмом через поршень и сменную пружину. Нагрузка на образце измеряется пружинным динамометром.  [c.95]

В установке П. И. Юзвинской и Н. Н. Давиденкова напряжения в винтовой пружине создаются за счет растяжения [59]. Пружина помещается в вертикальную трубчатую печь, длина которой в 10 раз превышает высоту пружины. При помощи тяг пружина прикрепляется верхним концом к жесткой перекладине, нижним — к динамометрическому полукольцу, жесткость которого в 100 раз больше жесткости пружины. Нагружение производят вручную путем растягивания пружины верхней тягой, при этом начальное касательное напряжение создается от 30 до 50 кг1мм -Деформацию динамометра измеряют индикатором через посредство наращенного на полукольцо жесткого удлинителя.  [c.207]

Пружины — это упругие элементы приборов и машин, кото-рь> е выполняют ответственные и сложные функции и применяются для обеспечения натяжения и нажатия (например, в муфтах, тормозах, фрикционных передачах и др.) аккумулирования энергии с последующим использованием пружины как двигателя (часовые пружины, ударные и падающие механизмы и пр.) -амортизации ударов и вибраций (рессоры, амортизаторы, буфера и т. п.,) возвратных перемещений (клапанов кулачковых механизмов и др.) измерения усилий (динамометры и др. Все пружины можно разделить по виду воспринимае.мой нагрузки — растяжения (рис. 122,6), сжатия (рис. 122,а, 123, а, б), кручения (рис. 123, г), изгиба (рис. 23, д, е) и по конструктивной форме- цилиндрические (рис. 122), цилинд-Рис. 122 рические составные (рис. 123, а) для  [c.134]

Справочник конструктора-машиностроителя Том3 изд.8 (2001) — [ c.0 ]

Максимальное растяжение пружины формула

Груз пружинного маятника покоится на горизонтальном гладком столе. Масса груза m, жёсткость пружины k, пружина сначала не растянута. Покоящемуся грузу быстро сообщают скорость направленную вдоль оси пружины, от вертикальной стенки.

Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

А) максимальное растяжение пружины

Б) модуль ускорения груза в момент максимального растяжения пружины

1)

2)

3)

4)

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

В начале движения потенциальная энергия системы равна нулю, а в точке, где растяжение пружины максимально кинетическая энергия системы равна нулю. По закону сохранения энергии:

В данном случае ускоряющая сила — это сила Гука. В момент максимального растяжения пружины

Источник: phys-ege.sdamgia.ru

Формула жесткости пружины

Определение и формула жесткости пружины

Силу, которая возникает в результате деформации тела и пытающаяся вернуть его в исходное состояние, называют силой упругости.

Чаще всего ее обозначают $>_$. Сила упругости появляется только при деформации тела и исчезает, если пропадает деформация. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Современник И. Ньютона Р. Гук установил зависимость силы упругости от величины деформации. Гук долго сомневался в справедливости своих выводов. В одной из своих книг он привел зашифрованную формулировку своего закона. Которая означала: «Ut tensio, sic vis» в переводе с латыни: каково растяжение, такова сила.

Рассмотрим пружину, на которую действует растягивающая сила ($overline$), которая направлена вертикально вниз (рис.1).

Силу $overline$ назовем деформирующей силой. От воздействия деформирующей силы длина пружины увеличивается. В результате в пружине появляется сила упругости ($>_u$), уравновешивающая силу $overline$. Если деформация является небольшой и упругой, то удлинение пружины ($Delta l$) прямо пропорционально деформирующей силе:

где в коэффициент пропорциональности называется жесткостью пружины (коэффициентом упругости) $k$.

Жесткость (как свойство) — это характеристика упругих свойств тела, которое деформируют. Жесткость считают возможностью тела оказать противодействие внешней силе, способность сохранять свои геометрические параметры. Чем больше жесткость пружины, тем меньше она изменяет свою длину под воздействием заданной силы. Коэффициент жесткости — это основная характеристика жесткости (как свойства тела).

Коэффициент жесткости пружины зависит от материала, из которого сделана пружина и ее геометрических характеристик. Например, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси может быть вычислена как:

где $G$ — модуль сдвига (величина, зависящая от материала); $d$ — диаметр проволоки; $d_p$ — диаметр витка пружины; $n$ — количество витков пружины.

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Формула жесткости соединений пружин

Пусть $N$ пружин соединены последовательно. Тогда жесткость всего соединения равна:

где $k_i$ — жесткость $i-ой$ пружины.

При последовательном соединении пружин жесткость системы определяют как:

Примеры задач с решением

Задание. Пружина в отсутствии нагрузки имеет длину $l=0,01$ м и жесткость равную 10 $frac. $Чему будет равна жесткость пружины и ее длина, если на пружину действовать силой $F$= 2 Н? Считайте деформацию пружины малой и упругой.

Решение. Жесткость пружины при упругих деформациях является постоянной величиной, значит, в нашей задаче:

При упругих деформациях выполняется закон Гука:

[F=kDelta l left(1.2right).]

Из (1.2) найдем удлинение пружины:

Длина растянутой пружины равна:

Вычислим новую длину пружины:

Ответ. 1) $k’=10 frac$; 2) $l’=0,21$ м

Задание. Две пружины, имеющие жесткости $k_1$ и $k_2$ соединили последовательно. Какой будет удлинение первой пружины (рис.3), если длина второй пружины увеличилась на величину $Delta l_2$?

Решение. Если пружины соединены последовательно, то деформирующая сила ($overline$), действующая на каждую из пружин одинакова, то есть можно записать для первой пружины:

Для второй пружины запишем:

Если равны левые части выражений (2.1) и (2.2), то можно приравнять и правые части:

[k_1Delta l_1=k_2Delta l_2left(2.3right).]

Из равенства (2.3) получим удлинение первой пружины:

Ответ. $Delta l_1=frac$

Источник: www.webmath.ru

Максимальное растяжение пружины формула

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

ФИЗИЧЕСКАЯ ВЕЛИЧИНАФОРМУЛА
Рисунок 1.12.1.

При малых деформациях () сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации:

Это соотношение выражает экспериментально установленный закон Гука . Коэффициент называется жесткостью тела . В системе СИ жесткость измеряется в ньютонах на метр (). Коэффициент жесткости зависит от формы и размеров тела, а также от материала. В физике закон Гука для деформации растяжения или сжатия принято записывать в другой форме. Отношение называется относительной деформацией , а отношение , где — площадь поперечного сечения деформированного тела, называется напряжением . Тогда закон Гука можно сформулировать так: относительная деформация пропорциональна напряжению :

Коэффициент в этой формуле называется модулем Юнга . Модуль Юнга зависит только от свойств материала и не зависит от размеров и формы тела. Модуль Юнга различных материалов меняется в широких пределах. Для стали, например, , а для резины , т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Рисунок 1.12.2.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Рисунок 1.12.3.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация не должна превышать . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Источник: physics.ru

Формулы расчета пружин растяжения

Пружина растяжения — это спирально-цилиндрическая пружина, витки которой прилегают друг к другу. Пружина подвергается действию противоположно направленных усилий, приложенных вдоль ее оси.

Размеры

dдиаметр проволоки [мм, д]
Dсредний диаметр пружины [мм, д]
D1наружный диаметр пружины [мм, д]
D2внутренний диаметр пружины [мм, д]
Hрабочая деформация [мм, д]
tшаг активных витков в ненагруженном состоянии [мм, д]
oвысота ушка [мм, д]
sxдеформация пружины [мм, д]
Lxдлина пружины [мм, д]
Fxрабочая сила, действующая на пружину [Н, фунт]
W8энергия деформации [Дж, фут фунт]
xиндекс, обозначающий состояние пружины

Навивка

1. Вправо (стандарт)

2. Влево (должна отображаться соответствующая надпись)

Состояния

1. Свободное: пружина не нагружена (индекс 0)

2. Предварительная нагрузка: пружина с минимальной рабочей нагрузкой (индекс 1)

3. Полная нагрузка: пружина с максимальной рабочей нагрузкой (индекс 8)

4. Предел: пружина вдавлена до касания витков (индекс 9).

Зацепы пружин растяжения

Высота зацепа пружины растяжения

Lдлина пружины в свободном состоянии [мм]
LZдлина части пружины с витками [мм]

Часто используемые зацепы пружин растяжения

Тип зацепа и информация о размерахИзображение
Половина витка, o = 0,55. 0,8 D2
Обычно d ≤ 6,3 мм, D >= 3,15 мм, i >= 9
Полный виток, o = 0,8. 1,1 D2
Используется без ограничений
Полный виток сбоку, o » D2
Когда нагрузка не обязательно должна прикладываться по оси
Полный виток внутри, o = 1,05. 1,2 D2
Обычно d ≥ 10 мм, i >= 7
Поднятый зацеп, o = 1,2 D2 . 30 d
Обычно для d = от 0,5мм до 4 мм, o ≤ 100 мм
Два полных витка, o »D
Используется без ограничений
Два полных витка сбоку, o » D2
Когда нагрузка не обязательно должна прикладываться по оси

Расчет пружин в метрических единицах

Общие формулы расчета

Коэффициент использования материала

Наружный диаметр пружины

Dсредний диаметр пружины [мм]
dдиаметр проволоки [мм]

Внутренний диаметр пружины

Dсредний диаметр пружины [мм]
dдиаметр проволоки [мм]

Рабочая деформация

L8длина полностью нагруженной пружины [мм]
L1длина предварительно нагруженной пружины [мм]
s8деформация полностью нагруженной пружины [мм]
s1деформация предварительно нагруженной пружины [мм]

Высота зацепа пружины

Lдлина пружины в свободном состоянии [мм]
LZдлина части пружины с витками [мм]

Индекс пружины

Dсредний диаметр пружины [мм]
dдиаметр проволоки [мм]

Поправочный коэффициент Валя

cиндекс пружины [-]
LZдлина части пружины с витками [мм]

Начальное растяжение

Последнее изменение этой страницы: 2016-12-09; Нарушение авторского права страницы

Источник: pedia.su

Жесткость пружины, формула

Пружина — упругий объект, целенаправленно подвергающийся сжатию или растяжению, в результате чего может запасать энергию, а затем, при ослабевании внешней деформирующей силы, возвращать ее. Пружины в нормальных условиях не должны подвергаться остаточным (пластическим) деформациям, т.е. таким воздействиям, после которых форма изделия уже не восстанавливается вследствие нарушения структуры их материала.

Типы пружин

Пружины можно классифицировать по направлению прилагаемой нагрузки:

  • пружины растяжения; предназначены для работы в режиме растягивания, при деформации их длина увеличивается; как правило, такие устройства имеют нулевой шаг, т.е. намотаны «виток к витку»; примером могут служить пружины в весах-безменах, пружины для автоматического закрытия дверей и т.д.;
  • пружины сжатия под нагрузкой, напротив, укорачиваются; в исходном состоянии между их витками есть некоторое расстояние, как, например, в амортизаторах автомобильных подвесок.

В данной статье рассматриваются пружины, представляющие собой цилиндрические спирали. В технике применяется много других разновидностей упругих устройств: пружины в виде плоских спиралей (используются в механических часах), в виде полос (рессоры), пружины кручения (в точных весах), тарельчатые (сжимающиеся конические поверхности) и т.п. Своего рода пружинами являются амортизирующие изделия из полимерных эластичных материалов, прежде всего резины. Во всех этих устройствах используется один и тот же принцип — запасать энергию упругой деформации и возвращать ее.

Попробуй обратиться за помощью к преподавателям

Физические характеристики пружин

Цилиндрические пружины характеризуются рядом параметров, сочетание которых обуславливает их жесткость — способность сопротивляться деформации:

  1. материал; пружины чаще всего изготавливают из стальной проволоки, причем сталь в них применялася особая, ее характеризует среднее или высокое содержание углерода, низкое содержание других примесей (низколегированный сплав) и особая термообработка (закалка), придающая материалу дополнительную упругость;
  2. диаметр проволоки; чем он меньше, тем эластичнее пружина, но тем меньше ее способность запасать энергию; пружины сжатия изготавливают, как правило, из более толстой проволоки, чем пружины растяжения;
  3. форма сечения проволоки; не всегда проволока, из которой намотана пружина, имеет круглое сечение; уплощенное сечение имеют пружины сжатия, чтобы при максимальном сокращении длины (виток «садится» на соседний виток) конструкция была более устойчивой;
  4. длина и диаметр пружины; длину пружины следует отличать от длины проволоки, из которой она намотана; эти два параметра согласуются через количество витков и диаметр пружины, который, в свою очередь, не следует путать с диаметром проволоки.

Задай вопрос специалистам и получи

ответ уже через 15 минут!

Существуют и другие физические характеристики, влияющие на работоспособность пружин. Например, при повышении температуры металл становится менее упругим, а при существенном ее понижении может стать хрупким. При интенсивной эксплуатации пружина со временем теряет часть упругости по причине постепенного разрушения связей между атомами кристаллической решетки.

Понятие жесткости

Жесткость как физическая величина характеризует силу, которую нужно приложить к пружине для достижения определенной степени растяжения или сжатия.

Коэффициент жесткости рассчитывается по формуле Гука:

где $F$ — сила, развиваемая пружиной, $k$ — коэффициент жесткости, зависящий от ее характеристик (см. выше) и измеряемый в ньютонах на метр, $x$ — абсолютное приращение расстояния, на которое изменилась длина пружины после приложения внешней силы. Знак минус в правой части формулы свидетельствует о том, что сила, порождаемая пружиной, действует в противоположном по отношению к нагрузке направлении.

Коэффициент жесткости можно вычислить экспериментально, подвешивая на расположенную вертикально и закрепленную за верхний конец пружину грузы с известной массой. В этом случае имеет место зависимость

$m cdot g — k cdot x = 0$,

где $m$ — масса, $g$ — ускорение свободного падения. Отсюда

Расчет жесткости цилиндрической пружины

Довольно просто понять как работает плоская пружина. Если положить на край письменного стола линейку и прижать один ее конец рукой к поверхности, но второй можно упруго изгибать, запасая и высвобождая энергию. Очевидно, что в момент изгиба расстояния между молекулами материала в некоторых фрагментах линейки увеличиваются, в некоторых уменьшаются. Электромагнитные связи, действующие между молекулами, стремятся вернуть вещество к прежнему геометрическому состоянию.

Несколько сложнее дело обстоит с цилиндрической пружиной. В ней энергия запасается не благодаря деформации изгиба, а за счет скручивания проволоки, из которой пружина навита, относительно продольной оси этой проволоки.

Представим сильно увеличенное сечение проволоки, из которой навита цилиндрическая пружина, выполненное перпендикулярной ее оси плоскостью. При таком рассмотрении можно абстрагироваться от спиральной формы и мысленно разбить весь объем проволоки на множество соприкасающихся торцевыми поверхностями «цилиндров», диаметр которых равен диаметру проволоки, а высота стремится к нулю. Между соприкасающимися торцами действуют молекулярные силы, препятствующие деформации.

При растяжении или сжатии пружины угол наклона между витками изменяется. Соседние «цилиндры» при этом вращаются друг относительно друга в противоположных направлениях вокруг общей оси. В каждом таком сечении запасается энергия. Отсюда следует, что чем из более длинного куска проволоки навита пружина (здесь играют роль диаметр и высота цилиндра, а также шаг витка), тем большее количество энергии она способна запасти. Увеличение диаметра проволоки также повышает ее энергоемкость. В целом формула, учитывающая основные факторы жесткости пружины, выглядит так:

  • $R$ — радиус цилиндра пружины,
  • $n$ — количество витков проволоки радиуса $r$,
  • $G$ — коэффициент, зависящий от материала.

Рассчитать коэффициент жесткости пружины, выполненной из стальной проволоки с $G = 8 cdot 10^$ Па и диаметром 1 мм. Радиус пружины 20 мм, количество витков — 25.

Подставим в формулу числовые значения, попутно переведя их в единицы системы СИ:

Ответ: $100 frac$

Так и не нашли ответ

на свой вопрос?

Просто напиши с чем тебе

нужна помощь

Источник: spravochnick.ru

Оценка статьи:

Загрузка…

Adblock

detector

Литература:
  1. Sprengel, «Pragmatische Geschichte der Heilkunde».
  2. Frédault, «Histoire de la médecine» (П., 1970).
  3. Харенко Е. А., Ларионова Н. И., Демина Н. Б. Мукоадгезивные лекарственные формы. Химико-фармацевтический журнал. 2009; 43(4): 21–29. DOI: 10.30906/0023-1134-2009-43-4-21-29.
  4. https://mash-xxl.info/info/119113/.
  5. https://instrument16.ru/instrument/maksimalnoe-rastyazhenie-pruzhiny-formula.html.
  6. Скориченко, «Доисторическая M.» (СПб., 1996); его же, «Гигиена в доисторические времена» (СПб., 1996).

Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector