Модуль упругости

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 10 января 2018; проверки требуют 8 правок.

Модуль упругости — общее название нескольких физических величин, характеризующих способность твёрдого тела (материала, вещества) упруго деформироваться (то есть не постоянно) при приложении к нему силы. В области упругой деформации модуль упругости тела в общем случае зависит от напряжения и определяется производной (градиентом) зависимости напряжения от деформации, то есть тангенсом угла наклона начального линейного участка диаграммы напряжений-деформаций:

где:

В наиболее распространенном случае зависимость напряжения и деформации линейная (закон Гука):

.

Если напряжение измеряется в паскалях, то, поскольку деформация является безразмерной величиной, единицей измерения Е также будет паскаль. Альтернативным определением является определение, что модуль упругости — это напряжение, достаточное для того, чтобы вызвать увеличение длины образца в два раза. Такое определение не является точным для большинства материалов, потому что это значение намного больше чем предел текучести материала или значения, при котором удлинение становится нелинейным, однако оно может оказаться более интуитивным.

Разнообразие способов, которыми могут быть изменены напряжения и деформации, включая различные направления действия силы, позволяют определить множество типов модулей упругости. Здесь даны три основных модуля:

  • Модуль Юнга (E) характеризует сопротивление материала растяжению/сжатию при упругой деформации, или свойство объекта деформироваться вдоль оси при воздействии силы вдоль этой оси; определяется как отношение напряжения к деформации сжатия (удлинения). Часто модуль Юнга называют просто модулем упругости.
  • Модуль сдвига или модуль жесткости (G или ) характеризует способность материала сопротивляться изменению формы при сохранении его объёма; он определяется как отношение напряжения сдвига к деформации сдвига, определяемой как изменение прямого угла между плоскостями, по которым действуют касательные напряжения. Модуль сдвига является одной из составляющих явления вязкости.
  • Модуль объёмной упругости или Модуль объёмного сжатия (K) характеризует способность объекта изменять свой объём под воздействием всестороннего нормального напряжения (объёмного напряжения), одинакового по всем направлениям (возникающего, например, при гидростатическом давлении). Он равен отношению величины объёмного напряжения к величине относительного объёмного сжатия. В отличие от двух предыдущих величин, модуль объёмной упругости невязкой жидкости отличен от нуля (для несжимаемой жидкости — бесконечен).

Существуют и другие модули упругости: коэффициент Пуассона, параметры Ламе.

Гомогенные и изотропные материалы (твердые), обладающие линейными упругими свойствами, полностью описываются двумя модулями упругости, представляющими собой пару любых модулей. Если дана пара модулей упругости, все другие модули могут быть получены по формулам, представленным в таблице ниже.

В невязких течениях не существует сдвигового напряжения, поэтому сдвиговый модуль всегда равен нулю. Это влечёт также и равенство нулю модуля Юнга.

Модули упругости (Е) для некоторых веществ:

МатериалЕ, МПаЕ, кгс/см²
Алюминий70000713 800
Вода203020300
Дерево10000102 000
Кость30000305 900
Медь1000001 020 000
Резина550
Сталь2000002 039 400
Стекло70000713 800

См. также[править | править код]

  • Модуль Юнга
  • Модуль сдвига G
  • Жёсткость
  • Предел текучести
  • Упругость
  • Предел прочности
  • Упругие волны
  • Уравнение Гассмана
  • en:Dynamic modulus

Ссылки[править | править код]

  • Free database of engineering properties for over 63,000 materials
  • Расчёт модуля упругости по ПНАЭ Г-7-002-86
  • Иомдина Е. Н. Механические свойства тканей глаза человека. (недоступная ссылка)

Литература[править | править код]

  • Модули упругости // Большая Советская энциклопедия (в 30 т.) / А. М. Прохоров (гл. ред.). — 3-е изд. — М.: Сов. энциклопедия, 1974. — Т. XVI. — С. 406. — 616 с.
  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4

Модуль Юнга

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

где:

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

где — плотность вещества.

Связь с другими модулями упругости[править | править код]

В случае изотропного тела модуль Юнга связан с модулем сдвига и модулем объёмной упругости соотношениями

и

где — коэффициент Пуассона.

Температурная зависимость модуля Юнга[править | править код]

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости определяется как вторая производная от внутренней энергии по соответствующей деформации . Поэтому при температурах ( — температура Дебая) температурная зависимость модуля упругости определяется простым соотношением

где — адиабатический модуль упругости идеального кристалла при ; — дефект модуля, обусловленный тепловыми фононами; — дефект модуля, обусловленный тепловым движением электронов проводимости[2].

Значения модуля Юнга для некоторых материалов[править | править код]

Значения модуля Юнга для некоторых материалов приведены в таблице

См. также[править | править код]

  • Закон Гука

Примечания[править | править код]

  1. ↑ Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия. — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. ↑ Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5-300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226-235.
  3. ↑ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. ↑ Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях (рус.) // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051.
  5. ↑ В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547-557.
  6. ↑ П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115-125.

Литература[править | править код]

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки[править | править код]

  • Квазистатический модуль Юнга (код на Mathcad).

Модуль упругости стали

►Модуль упругости стали

►Модуль упругости разных марок стали

►Таблица модулей прочности марок стали

►Модуль упругости для металлов и сплавов

►Упругость сталей

►Предел прочности

При проектировании стальных изделий или элементов конструкций учитывают способность сплава выдерживать разнонаправленные виды нагрузок: ударные, изгибающие, растягивающие, сжимающие. Значение модуля упругости стали, наряду с твердостью и другими характеристиками, показывает стойкость к этим воздействиям.

Например, в железобетонном строительстве используют продольные и поперечные арматурные стержни. В горизонтальной плоскости они подвержены растяжению, а в вертикальной — давлению всей массы конструкции. В местах концентрации напряжений: углы, технологические проемы, лифтовые шахты и лестничные пролеты — размещают большее количество арматуры. Способность бетона впитывать воду служит причиной постоянных изменений сжимающих и растягивающих нагрузок.

Рассмотрим другой пример. В военное время создавалось множество разработок в сфере авиации. Самыми частыми причинами катастроф были возгорания двигателей. Отрываясь от земли, самолет попадает в атмосферные слои с разреженным воздухом и его корпус расширяется, обратный процесс происходит при посадке. Кроме этого, на конструкцию воздействует сопротивление воздушных потоков, давление искривленных слоев воздуха и другие силы. Несмотря на прочность, существующие в то время сплавы не всегда были пригодны для изготовления ответственных деталей, в основном, это приводило к разрывам топливных баков.

В различных видах промышленности из стали изготавливают детали подвижных механизмов: пружины, рессоры. Марки, используемые для таких целей, не склонны к трещинообразованию при постоянно изменяющихся нагрузках.

Модуль упругости стали

Упругость твердых тел — это способность принимать исходную форму после прекращения деформирующих воздействий. Например, брусок пластилина обладает нулевой пружинистостью, а резиновые изделия можно сжимать и растягивать. При различных применениях сил к предметам и материалам, они деформируются. В зависимости от физических свойств тела или вещества, различают два вида деформации:

  • Упругая — последствия исчезают по окончании действия внешних сил;
  • Пластическая — необратимое изменение формы.

Модуль упругости — название нескольких физических величин, характеризующих склонность твердого тела деформироваться упруго.

Впервые понятие было введено Томасом Юнгом. Ученый подвешивал грузы к металлическим стержням и наблюдал за их удлинением. У части образцов длина увеличилась в два раза, другие — были разорваны в ходе эксперимента.

Сегодня определение объединяет ряд свойств физических тел:

Модуль Юнга: Вычисляется по формуле E= σ/ε, где σ — напряжение, равное силе, деленной на площадь ее приложения, а ε — упругая деформация, эквивалентная отношению удлинения образца с начала деформации и сжатию после ее прекращения.

Модуль сдвига (G или μ): способность сопротивляться деформации при сохранении объема, когда направление нагрузок производится по касательной. Например, при ударе по шляпке гвоздя, если он был произведен не под прямым углом, изделие искривляется. В сопромате величину используют для вычисления сдвигов и кручения.

Модуль объемной упругости или объемного сжатия (К): изменения, вызванные действием всестороннего напряжения, например, гидростатического давления.

Коэффициент Пуансона (Ⅴ или μ): отношение поперечного сжатия к продольному удлинению, вычисляется для образцов материалов. У абсолютно хрупких веществ он равен нулю.

Константа Ламе: энергия, провоцирующая возвращение в исходную форму, вычисляется через построение скалярных комбинаций.

Модуль упругости стали соотносится с рядом других физических величин. Например, при проведении эксперимента на растяжение, важно учитывать предел прочности, превышение которого оборачивается разрушением детали.

  • Соотношение жесткости и пластичности;
  • Ударная вязкость;
  • Предел текучести;
  • Относительное сжатие и растяжение (продольное и поперечное);
  • Пределы прочности при ударных, динамических и др. нагрузках.

Применение ряда подходов обусловлено требованиями к механическим свойствам материалов в разных отраслях промышленности, строительства, приборостроения.

Модуль упругости разных марок стали

Наибольшей способностью противостоять деформации обладают рессорно-пружинистые стальные сплавы. Эти материалы характеризуются высоким пределом текучести. Величина показывает напряжение, при котором деформация растет без внешних воздействий, например при сгибании и скручивании.

Характеристики упругости стали зависят от легирующих элементов и строения кристаллической решетки. Углерод придает стальному сплаву твердость, однако в высоких концентрациях снижается пластичность и пружинистость. Основные легирующие добавки, повышающие упругие свойства: кремний, марганец, никель, вольфрам.

Нередко, нужных показателей можно достичь лишь с помощью специальных режимов термообработки. Таким образом все фрагменты детали будут иметь единые показатели текучести, а слабые участки будут исключены. В противном случае изделие может надломиться, лопнуть или растрескаться. Марки 60Г и 65Г обладают такими характеристиками, как сопротивление разрыву, вязкость, стойкость к износу, они применяются для изготовления промышленных пружин и музыкальных струн.

В металлургической промышленности создано несколько сотен марок стали с разными модулями упругости. В таблице приведены характеристики популярных сплавов.

Таблица модулей прочности марок стали

Наименование сталиМодуль упругости Юнга, 10¹²·ПаМодуль сдвигаG, 10¹²·ПаМодуль объемной упругости, 10¹²·ПаКоэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая165…18087…9145…49154…168
Сталь 3179…18993…10249…52164…172
Сталь 30194…205105…10872…77182…184
Сталь 45211…223115…13076…81192…197
Сталь 40Х240…260118…12584…87210…218
65Г235…275112…12481…85208…214
Х12МФ310…320143…15094…98285…290
9ХС, ХВГ275…302135…14587…92264…270
4Х5МФС305…315147…16096…100291…295
3Х3М3Ф285…310135…15092…97268…273
Р6М5305…320147…15198…102294…300
Р9320…330155…162104…110301…312
Р18325…340140…149105…108308…318
Р12МФ5297…310147…15298…102276…280
У7, У8302…315154…160100…106286…294
У9, У10320…330160…165104…112305…311
У11325…340162…17098…104306…314
У12, У13310…315155…16099…106298…304

Модуль упругости для металлов и сплавов

Наименование материалаЗначение модуля упругости, 10¹²·Па
Алюминий65-72
Дюралюминий69-76
Железо, содержание углерода менее 0,08 %165-186
Латунь88-99
Медь (Cu, 99 %)107-110
Никель200-210
Олово32-38
Свинец14-19
Серебро78-84
Серый чугун110-130
Сталь190-210
Стекло65-72
Титан112-120
Хром300-310

Упругость сталей

Наименование сталиЗначение модуля упругости, 10¹²·Па
Сталь низкоуглеродистая165-180
Сталь 3179-189
Сталь 30194-205
Сталь 45211-223
Сталь 40Х240-260
65Г235-275
Х12МФ310-320
9ХС, ХВГ275-302
4Х5МФС305-315
3Х3М3Ф285-310
Р6М5305-320
Р9320-330
Р18325-340
Р12МФ5297-310
У7, У8302-315
У9, У10320-330
У11325-340
У12, У13310-315

Предел прочности

Твердые тела способны выдерживать ограниченные нагрузки, превышение предела приводит к разрушению структуры металла, формированию заметных сколов или микротрещин. Возникновение дефектов сопряжено со снижением эксплуатационных свойств или полным разрушением. Прочность сплавов и готовых изделий проверяют на испытательных стендах. Стандартами предусмотрен ряд испытаний:

  • Продолжительное применение деформирующего усилия;
  • Кратковременные и длительные ударные воздействия;
  • Растяжение и сжатие;
  • Гидравлическое давление и др.

В сложных механизмах и системах выход из строя одного элемента автоматически становится причиной повышения нагрузок на другие. Как правило, разрушения начинаются на тех участках, где напряжения максимальны. Запас прочности служит гарантией безопасности оборудования во внештатных ситуациях и продлевает срок его службы.

Оцените нашу статью

[Всего голосов: 2 Рейтинг статьи: 5]

Модуль нормальной упругости (Модуль Юнга) для различных марок сталей и сплавов

Модуль нормальной упругости (Модуль Юнга) — физическая величина (E) характеризующая сопротивление материала растяжению или сжатию при упругой деформации, а также при воздействии силы вдоль оси, свойство объекта деформироваться вдоль этой оси. Модуль упругости определяется как отношение напряжения к деформации сжатия (удлинения). Параметр характеризует степень жесткости конкретного материала. Обычно модуль Юнга называют просто модулем упругости. Назван в честь английского физика XIX века Томаса Юнга.

Поиск и выбор модуля нормальной упругости для различных марок сталей и сплавов по таблице, при указанных температурах °C. В таблице использованы справочники [1, 2].

Для выбора марок стали следует пользоваться системой поиска по таблице.

Модуль нормальной упругости Е, кН/мм2

Марка стали, сплава20°C100°C200°C300°C400°C500°C600°C700°C800°C900°C
Ст2пс198183175167158
Ст2сп198183175167158
Ст3кп213208202195187176167153
Ст3пс213208202195187176167153
Ст3сп19419218718317816715914612099
Ст4пс196183174167158
Ст5пс198196186175167
Ст5сп198196191185164
Ст6пс197197186175168
Ст6сп197197186175168
08203207182153141
08кп203207182153141
10206190195186178169157
10кп186
15198183166154
15кп201192185172156
20 [3]210203199190182172160
20кп212208203197189177163140
25198196191185164
30200196191185163
35206197183176167
40209206196
45200191190172
50216211216177
55210
60204208189175
75191
85191
20К200196191184177
22К207205201194188
А12198183167154
15Г186183
20Г204
30Г204
40Г200
50Г216213208199185174160142130
35Г2204
40Г2212
45Г2204
09Г2С179169145918059
20Х216213198193181171165143133
30Х208211197175
35Х214
38ХА196
40Х214211197
45Х206
50Х206207
10ГН2МФА, 10ГН2МФА-ВД,

10ГН2МФА-Ш

210205198191182
12МХ212106201195189179170160
15ХМ204169
30ХМ, 30ХМА209204197188
35ХМ209204197188
33ХС214206196186176168157137127
38ХС219
40ХС219
15ХФ206
14ХГС200
25ХГСА213206194187175168163143130
30ХГСА194174169156
18ХГТ211205197191176168155136129
30ХГТ212202195189174169157138132
12Х1МФ (ЭИ 575)209206202197189179166
13Х1МФ (14Х1ГМФ, ЦТ 1)214211205198185179170155
15Х1М1Ф210204197190182174166157
25Х1МФ (ЭИ 10)213207202194187177163
25Х1М1Ф (Р2, Р2МА)216214210205197186171
20Х1М1Ф1ТР (ЭП 182)211208204198190179167150
20Х1М1Ф1БР (ЭП 44)213207201192184177164149
40ХН200
30ХН2МА204201194186182171159
12ХН3А200
20ХН3А212204194188169169153138132
30ХН3А215207195187175171
25Х2М1Ф (ЭИ 723)219214209203196188179172
10Х2МФБ (ЭИ 531),

12Х2МФБ (ЭИ 531)

220181173
38Х2МЮА (38ХМЮА)209202194190181174162147137
15Х2НМФА, 15Х2НМФА-А,

15Х2НМФА класс 1

214210205198190
20Х3МВФ (ЭИ 415, ЭИ 579)201200179171153119118
15Х5М (12Х5МА, Х5М)211178145102
65Г207
40ХФА203
50ХФА196
55С2196
60С2, 60С2А245
ШХ15201
95Х18 (9Х18, ЭИ 229)205
12Х8ВФ (1Х8ВФ)218164153
10Х9МФБ (ДИ 82)220215210200190180170
10Х9В2МФБР-Ш19118418417315298
40Х10С2М (4Х10С2М, ЭИ 107)214211205202196187172151129
15Х11МФ (1Х11МФ)224218209201189177
12Х11В2МФ (типа ЭИ 756)208204199191182170161148
18Х11МНФБ (2Х11МФБН, ЭП 291)224177209201189177
03Х11Н10М2Т196
10Х11Н20Т3Р (ЭИ 696)16014013513211511390
10Х11Н23Т3МР (10Х12Н22Т3МР,

ЭП 33, ЭИ 696М)

160142138132115
18Х12ВМБФР-Ш (ЭИ 993-Ш)224211205191184170152
20Х12ВНМФ (ЭП 428)212196190180163
06Х12Н3Д212211205198187
10Х12Н3М2ФА (Ш),

10Х12Н3М2ФА-А (Ш)

217212207199189176167
37Х12Н8Г8МФБ (ЭИ 481)171157147140133126115
08Х13 (0Х13, ЭИ 496)217212206198189180
12Х13 (1Х13)217212206198189180
20Х13 (2Х13)218214208200189181169
30Х13 (3Х13)216212206196187177166
40Х13 (4Х13)214208202194185173160
12Х13Г12АС2Н2 (ДИ 50)188185159142
10Х13Г12БС2Н2Д2Б (ДИ 59)19519218577166160150141137
03Х13Н8Д2ТМ (ЭП 699)195191187182171
08Х14МФ222219213203195183175
10Х14Г14Н4Т

(Х14Г14Н3Т, ЭИ 711)

194189181170164159161
1Х14Н14В2М (ЭИ 257)198168160
45Х14Н14В2М (ЭИ 69) [3]212200194185176169160152144
09Х14Н19В2БР (ЭИ 695Р) [5]207158151147
09Х14Н19В2БР1 (ЭИ 726)198195189182175166157149
08Х15Н2В4ТР (ЭП 164) [5]223215209200191182173165156
07Х16Н6 (Х16Н6, ЭП 288)199
08Х16Н9М2 (Х16Н9М2)21019818880172157153143138
08Х16Н13М2Б (ЭИ 405, ЭИ 680)202196188180171164155147
10Х16Н14В2БР

(1Х16Н14В2БР, ЭП 17)

188181174166158151145136
08Х17Т (0Х17Т, ЭИ 645)206
12Х17 (Х17, ЭЖ 17)232227219211201192182165148
14Х17Н2 (1Х17Н2, ЭИ 268)193164148133
02Х17Н11М2200170150135
08Х17Н13М2Т (0Х17Н13М2Т)206186177177167157147
10Х17Н13М2Т

(Х17Н13М2Т, ЭИ 448)

206186177177167157147
10Х17Н13М3Т

(Х17Н13М3Т, ЭИ 432)

206186177177167157147
03Х17Н14М3 (000Х17Н13М2)195190
08Х17Н15М3Т (ЭИ 580)203
015Х18М2Б-ВИ (ЭП 882-ВИ)21612206198185179163144
12Х18Н9 (Х18Н9)199
12Х18Н9Т (Х18Н9Т)195189182175167160153143135
17Х18Н9 (2Х18Н9)199
08Х18Н10 (0Х18Н10)196
08Х18Н10Т

(0Х18Н10Т, ЭИ 914) [4]

196158128127117108102
12Х18Н10Т [4]198194189181174166157147
12Х18Н12Т (Х18Н12Т)210198193186177170157147
10Х18Н18Ю4Д (ЭП 841)18618217817116516115614638127
36Х18Н25С2 (4Х18Н25С2, ЭЯ 3С)200191186178171162154147
01Х19Ю3БЧ-ВИ

(02Х18Ю3Б-ВИ, ЭП 904-ВИ)

220216210200192183167152
31Х19Н9МВБТ (ЭИ 572)201186181176167157
08Х21Н6М2Т (0Х21Н6М2Т, ЭП 54)196196185178169164
02Х22Н5АМ3200194186180
08Х22Н6Т (0Х22Н5Т, ЭП 53)203201193181165162154141139
20Х23Н13 (Х23Н13, ЭИ 319)207
20Х23Н18 (Х23Н18, ЭИ 417)200182176170160150141
03Х24Н6АМ3 (ЗИ 130)200196185180171
15Х25Т (Х25Т, ЭИ 439)204200197189176164140124119109
12Х25Н16Г7АР (ЭИ 835)193186178171163156147138131127
20Х25Н20С2 (Х25Н20С2, ЭИ 283)195192186185180175150140130120
03Н18К9М5Т185
У8, У8А209205199192185175166
У9, У9А209
У12, У12А209205200193185178166
9ХС190
Р9220
Р12223
20Л201196188183173165152132120
35Л212206201192176163151131118
50Л219214208196178170155136122
20ГЛ204
110Г13Л204
08ГДНФЛ212206201189177167155137127
32Х06Л216211207195178174166141131
40ХЛ219216210204185176164143132
20ХМФЛ197192187182178171163155
35ХМЛ215212207203192179166141130
35ХГСЛ215211203196184174164143125
20Х5МЛ211178145102
15Х11МФБЛ (1Х11МФБЛ, Х11ЛА)210202195187178162
10Х12НДЛ217216212204198188179164
20Х12ВНМФЛ (15Х12ВНМФЛ,

Х11ЛБ, ЭИ 802Л)

210202195187178162
20Х13Л [4]222216211203196184167149140
10Х13Н3М1Л215
10Х18Н9Л170143135127120
12Х18Н9ТЛ [4]194189176165149138133125112
06ХН28МДТ

(0Х23Н28М3Д3Т, ЭИ 943)

191186179171161156151145
ХН32Т (ЭП 670)205
ХН35ВТ (ЭИ 612), ХН35ВТ-ВД198195190186179177166158
ХН35ВТК (ЭИ 612К)198184175171164159141
ХН35ВТЮ (ЭИ 787)214207199195189181170163149
ХН35ВТР (ЭИ 725)206186177167167157157
36НХТЮ8М210
ХН45Ю (ЭП 747)207201192187178171156148124120
06ХН46Б (Х20Н46Б, ЭП 350)175173168164157151147
05ХН46МВБЧ (ДИ 65)207203196190183177170163154144
ХН55ВМТКЮ (ЭИ 929),

ХН55ВМТКЮ-ВД (ЭИ 929-ВД)

218181172163
ХН59ВГ-ИД (ЭК 82-ИД)217214208203196191189180172166
ХН60Ю (ЭИ 559А)210169
ХН60ВТ (ЭИ 868)218204198192184176160
ХН62МБВЮ (ЭП 709)226197189
ХН62МВКЮ (ЭИ 867)228191179140
ХН65ВМТЮ (ЭИ 893)219206201196193183176162
ХН65КМВЮБ-ВД (ЭП 800-ВД)230227222217211204200188181171
ХН65МВУ (ЭП 760)200
ХН67МВТЮ (ЭП 202, ЭИ 445Р)212208203197192185178170161139
ХН70БДТ (ЭК 59)219214208201198
ХН70ВМЮТ (ЭИ 765)222217211205199193186179
ХН70ВМТЮ (ЭИ 617)196162147142127
ХН70ВМТЮФ (ЭИ 826),

ХН70ВМТЮФ-ВД, (ЭИ 826-ВД)

196167162152142127
ХН73МБТЮ (ЭИ 698)203177177160150
ХН75ВМЮ (ЭИ 827)240236231225218215204195187178
ХН77ТЮР (ЭИ 437Б)210163153130115

(850°C)

ХН78Т (ЭИ 435)210169
ХН80ТБЮ (ЭИ 607)
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector