Предел выносливости

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 3 августа 2014; проверки требуют 8 правок.

Преде́л выно́сливости (также преде́л уста́лости) — в науках о прочности: одна из прочностных характеристик материала, характеризующих его выносливость, то есть способность воспринимать нагрузки, вызывающие цикличные напряжения в материале.

Предел выносливости определяется, как наибольшее (предельное) максимальное напряжение цикла, при котором не происходит усталостного разрушения образца после произвольно большого числа циклических нагружений.

Предел выносливости обозначают как , где коэффициент R принимается равным коэффициенту асимметрии цикла равному отношению минимального напряжения цикла к максимальному [1]. Таким образом, предел выносливости материала в случае симметричных циклов нагружения обозначают как , а в случае пульсационных как .

Для железистых и титановых сплавов можно установить предельную величину максимальных напряжений цикла, при которых материал не разрушится при произвольно большом числе нагружений. Однако другие металлы, такие как медь или алюминий, подвержены усталостному разрушению под действием сколь угодно малых нагрузок. В таких случаях принято говорить об ограниченном пределе выносливости , где коэффициент N соответствует заданному числу циклов нагружения, и обычно принимается за или циклов.

Содержание

Определение предела выносливости[править | править код]

Предел выносливости материала определяют с помощью испытаний серий одинаковых образцов (не менее 10 шт.): на изгиб, кручение, растяжение-сжатие или в условиях комбинированного нагружения (последние два режима для имитации работы материала при асимметричных циклах нагружения или в условиях сложного нагружения).

Испытание начинают проводить при высоких напряжениях (0,7 — 0,5 от предела прочности), при которых образец выдерживает наименьшее число циклов. Постепенно уменьшая напряжения можно обнаружить, что стальные образцы не проявляют склонности к разрушению независимо от длительности испытания. Опыт их испытания показывает, что если образец не разрушился до циклов, то и при более длительном испытании он не разрушится. Поэтому это число циклов обычно принимают за базу испытаний и устанавливают то наибольшее значение максимального напряжения цикла, при котором образец не разрушается до базы испытаний. Это значение и принимают за предел выносливости.

Результаты испытаний можно представить в виде кривой усталости (также кривая Веллера, S-N диаграмма), которая строится для симметричных циклов нагружения. По оси абсцисс на логарифмической шкале откладывают количество циклов, по оси ординат напряжения:

Кривые усталости стали (синий цвет, виден предел выносливости) и алюминия (красный, предел выносливости неопределяем).

Кривая усталости (выносливости) показывает, что с увеличением числа циклов уменьшается минимальное напряжение, при котором происходит разрушение материала.

Связь предела выносливости с другими прочностными характеристиками материала[править | править код]

Испытания на усталость очень трудоёмки, связаны с получением и обработкой значительного массива данных, полученных экспериментальным путём и для которых характерен большой разброс значений. Поэтому были предприняты попытки связать эмпирическими формулами предел выносливости с известными прочностными характеристиками материала. Более всего для этой цели подходит такая характеристика материала как предел прочности.

Установлено, что, как правило, для сталей предел выносливости при изгибе составляет половину от предела прочности:

Для высокопрочных сталей можно принять:

Для цветных металлов можно принять:

Для углепластиков можно принять:

Аналогично можно провести испытания на кручение в условиях циклически изменяющихся напряжений. Для обычных сталей в этом случае можно принять:

Для хрупких материалов (высоколегированная сталь, чугун) в этом случае можно принять:

Данными соотношениями следует пользоваться с осторожностью, так как они получены при определенных режимах нагружения (изгибе и кручении). При испытаниях на растяжение-сжатие предел выносливости оказывается приблизительно на 10-20 % ниже, чем при изгибе, а при кручении полых образцов он оказывается отличным от полученного при кручении образцов сплошных.

В случае несимметричных циклов образцы испытывают не на изгиб, а на растяжение-сжатие или на кручение с использованием гидропульсаторов. Для несимметричных циклов строят так называемую диаграмму предельных амплитуд. Для этого находят пределы выносливости для выбранного значения постоянного напряжения при соответствующей амплитуде . Точка А при этом очевидно будет являться пределом выносливости при симметричном цикле, а точка В, которая не имеет амплитудной составляющей и по сути является постоянно действующим напряжением, будет являть собой фактически предел прочности :

см. рис

Практическое применение диаграммы предельных амплитуд заключается в том, что после построения диаграммы, проводятся испытания на только конкретные значения и . Если рабочая точка располагается под кривой, то образец способен выдержать неограниченное количество циклов, если над кривой — ограниченное.

Влияние асимметрии цикла[править | править код]

Пределы выносливости для несимметричного цикла выше, чем для симметричного. При использовании переходной прямой считают, что , где . При использовании параболы: [2].

См. также[править | править код]

  • Усталость материала
  • Усталостная прочность

Примечания[править | править код]

  1. ↑ Зиновьев В. А. Краткий технический справочник. Том 1. — М..-Л. Техтеориздат, 1949. — c. 344
  2. ↑ Зиновьев В. А. Краткий технический справочник. Том 1. — М..-Л. Техтеориздат, 1949. — c. 345

Литература[править | править код]

  • Феодосьев В. И. Сопротивление материалов. — М.: Изд-во МГТУ им. Н. Э. Баумана, 1999. С. 479-483. ISBN 5-7038-1340-9

Предел прочности

Определённая пороговая величина для конкретного материала, превышение которой приведёт к разрушению объекта под действием механического напряжения. Основные виды пределов прочности: статический, динамический, на сжатие и на растяжение. Например, предел прочности на растяжение — это граничное значение постоянного (статический предел) или переменного (динамический предел) механического напряжения, превышение которого разорвет (или неприемлемо деформирует) изделие. Единица измерения — Паскаль [Па], Н/мм ² = [МПа].

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1], таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Предел выносливости или предел усталости (σR)

Способность материала воспринимать нагрузки, вызывающие циклические напряжения. Этот прочностной параметр определяют как максимальное напряжение в цикле, при котором не происходит усталостного разрушения изделия после неопределенно большого количества циклических нагружений (базовое число циклов для стали Nb = 10 7). Коэффициент R (σR) принимается равным коэффициенту асимметрии цикла. Поэтому предел выносливости материала в случае симметричных циклов нагружения обозначают как σ-1, а в случае пульсационных — как σ0.

Отметим, что усталостные испытания изделий очень продолжительны и трудоёмки, они включают анализ больших объёмов экспериментальных данных при произвольном количестве циклов и существенном разбросе значений. Поэтому чаще всего используют специальные эмпирические формулы, связывающие предел выносливости с другими прочностными параметрами материала. Наиболее удобным параметром при этом считается предел прочности.

Для сталей предел выносливости при изгибе как правило составляет половину от предела прочности: Для высокопрочных сталей можно принять:

Для обычных сталей при кручении в условиях циклически изменяющихся напряжений можно принять:

Приведённые выше соотношения стоит применять осмотрительно, потому что они получены при конкретных режимах нагружения, т.е. при изгибе и при кручении. Однако, при испытании на растяжение-сжатие предел выносливости становится примерно на 10-20% меньше, чем при изгибе.

Предел выносливости

Предел пропорциональности (σ)

Максимальная величина напряжения для конкретного материала, при которой ещё действует закон Гука, т.е. деформация тела прямо пропорционально зависит от прикладываемой нагрузки (силы). Обратите внимание, что для множества материалов достижение (но не превышение!) предела упругости приводит к обратимым (упругим) деформациям, которые, впрочем, уже не прямо пропорциональны напряжениям. При этом такие деформации могут несколько «запаздывать» относительно роста или снижения нагрузки.

Предел выносливости

Диаграмма деформации металлического образца при растяжении в координатах удлинение (Є) — напряжение (σ).

1:Предел абсолютной упругости.

2:Предел пропорциональности.

3:Предел упругости.

4:Предел текучести. (σ 0.2)

Предел выносливости

Предел прочности

Преде́л про́чности — механическое напряжение , выше которого происходит разрушение материала. Иначе говоря, это пороговая величина, превышая которую механическое напряжение разрушит некое тело из конкретного материала. Следует различать статический и динамический пределы прочности. Также различают пределы прочности на сжатие и растяжение.

Величины предела прочности[править | править код]

Статический предел прочности[править | править код]

Статический предел прочности, также часто называемый просто пределом прочности есть пороговая величина постоянного механического напряжения, превышая который постоянное механическое напряжение разрушит некое тело из конкретного материала. Согласно ГОСТ 1497-84 «Методы испытаний на растяжение», более корректным термином является временное сопротивление разрушению — напряжение, соответствующее наибольшему усилию, предшествующему разрыву образца при (статических) механических испытаниях. Термин происходит от представления, по которому материал может бесконечно долго выдержать любую статическую нагрузку, если она создаёт напряжения, меньшие статического предела прочности, то есть не превышающие временное сопротивление. При нагрузке, соответствующей временному сопротивлению (или даже превышающей её — в реальных и квазистатических испытаниях), материал разрушится (произойдет дробление испытываемого образца на несколько частей) спустя какой-то конечный промежуток времени (возможно, что и практически сразу, — то есть не дольше чем за 10 с).

Динамический предел прочности[править | править код]

Динамический предел прочности есть пороговая величина переменного механического напряжения (например при ударном воздействии), превышая которую переменное механическое напряжение разрушит тело из конкретного материала. В случае динамического воздействия на это тело время его нагружения часто не превышает нескольких секунд от начала нагружения до момента разрушения. В такой ситуации соответствующая характеристика называется также условно-мгновенным пределом прочности, или хрупко-кратковременным пределом прочности.

Предел прочности на сжатие[править | править код]

Предел прочности на сжатие есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) сожмет тело из конкретного материала — тело разрушится или неприемлемо деформируется.

Предел прочности на растяжение[править | править код]

Предел прочности на растяжение есть пороговая величина постоянного (для статического предела прочности) или, соответственно, переменного (для динамического предела прочности) механического напряжения, превышая который механическое напряжение в результате (за конечный достаточно короткий промежуток времени) разорвет тело из конкретного материала. (На практике, для детали какой либо конструкции достаточно и неприемлемого истончения детали.)

Другие прочностные параметры[править | править код]

Мерами прочности также могут быть предел текучести, предел пропорциональности, предел упругости, предел выносливости, предел прочности на сдвиг и др. так как для выхода конкретной детали из строя (приведения детали в негодное к использованию состояние) часто достаточно и чрезмерно большого изменения размеров детали. При этом деталь может и не разрушиться, а лишь только деформироваться. Эти показатели практически никогда не подразумеваются под термином «предел прочности».

Прочностные особенности некоторых материалов[править | править код]

Значения предельных напряжений (пределов прочности) на растяжение и на сжатие у многих материалов обычно различаются.

У композитов предел прочности на растяжение обычно больше предела прочности на сжатие. Для керамики (и других хрупких материалов) — наоборот, характерно многократное превышение пределом прочности на сжатие предела прочности на растяжение. Для металлов, металлических сплавов, многих пластиков, как правило, характерно равенство предела прочности на сжатие и предела прочности на растяжение. В большей степени это связано не с физикой материалов, а с особенностями нагружения, схемами напряженного состояния при испытаниях и с возможностью пластической деформации перед разрушением.

Прочность твёрдых тел обусловлена в конечном счёте силами взаимодействия между атомами, составляющими тело. При увеличении расстояния между атомами они начинают притягиваться, причем на критическом расстоянии сила притяжения по абсолютной величине максимальна. Напряжение, отвечающее этой силе, называется теоретической прочностью на растяжение и составляет σтеор ≈ 0,1E, где E — модуль Юнга . Однако на практике наблюдается разрушение материалов значительно раньше, это объясняется неоднородностями структуры тела, из-за которых нагрузка распределяется неравномерно.

Некоторые значения прочности на растяжение в МПа (1 кгс/мм² = 100 кгс/см² ≈ 10 МН/м² = 10 МПа) (1 МПа = 1 Н/мм² ≈ 10 кгс/см²)[1]:

Материалы, МПа
Бор57000,083
Графит (нитевидный кристалл)24010,024
Сталь 60С2А рессорно-пружинная1570 (после термообработки)0,0074
Сапфир (нитевидный кристалл)15000,028
Железо (нитевидный кристалл)13000,044
Тянутая проволока из высокоуглеродистой стали4200,02
Тянутая проволока из вольфрама3800,009
Стекловолокно3600,035
Сталь Ст0 обыкновенного качества3000,0017
Нейлон500,0025

См. также[править | править код]

  • Теоретический предел прочности

Примечания[править | править код]

  1. ↑ Диапазон пределов прочности для стали составляет 500-3000 МПа (Б. Н. Арзамасов, В. А. Брострем, Н. А. Буше и др. Конструкционные материалы. Справочник. — М.: Машиностроение, 1990. — 688 с.).

Пределы выносливости

Предел выносливости не является постоянной, присущей данному материалу характеристикой, и подвержен гораздо большим колебаниям, чем механические характеристики при статическом нагружении. Он зависит от условий нагружения, типа цикла, в частности, от степени его асимметрии, формы и размеров детали, технологии ее изготовления, состояния поверхности и других факторов.

Таким образом, при испытании на усталость стандартных образцов определяется собственно не предел выносливости материала, а предел выносливости образца, изготовленного из данного материала. При переходе от образца к реальной детали следует вводить ряд поправок, учитывающих форму и размеры детали, состояние ее поверхности и т. д. В связи с этим возникло понятие сопротивление усталости деталей. В этом понимании предел выносливости далеко отходит от первоначального понятия как характеристики материала, хотя предел выносливости, определенный на стандартных образцах, по-прежнему приводят в числе основных прочностных показателей материала.

Появилось также понятие сопротивление усталости узлов (резьбовых соединений, соединений с натягом и других сборных конструкций). Таким образом, в понятие сопротивления усталости вводят не только факторы свойств материала и геометрической формы деталей, но и факторы взаимодействия со смежными деталями.

Пределы выносливости на изгиб имеют минимальное значение при симметричном знакопеременном цикле, повышаются с увеличением степени его асимметрии, возрастают в области пульсирующих нагрузок, а с уменьшением амплитуды пульсаций приближаются к показателям статической прочности материала. Пределы выносливости при растяжении примерно е 1,1-1,5 раза больше, а при кручении в 1,5-2 раза меньше, чем в случае симметричного знакопеременного изгиба.

Между характеристиками сопротивления усталости и статической прочности нет определенной зависимости. Наиболее устойчивые соотношения существуют между σ-1 (пределом выносливости на изгиб с симметричным циклом) и σв (пределом прочности), а также σ0,2 (условным пределом текучести) при статическом растяжении.

По опытным данным, эти соотношения следующие:

— для сталей

— для стальных отливок, высокопрочного чугуна и медных сплавов

— для алюминиевых и магниевых сплавов

— для серого чугуна

На основании обработки результатов испытаний на усталость улучшенных конструкционных сталей Шимек получил следующие зависимости (рис. 163) пределов выносливости от предела прочности:

— на растяжение-сжатие при симметричном цикле

— на растяжение-сжатие при пульсирующем цикле

— на изгиб при симметричном цикле

— на кручение при симметричном цикле

— на кручение при пульсирующем цикле

Пределы выносливости при симметричном цикле связаны между собой следующими ориентировочными зависимостями:

Пределы выносливости при пульсирующем и знакопеременном симметричном циклах связаны следующими приближенными зависимостями:

— при изгибе

— при растяжении

— при кручении

Пределы выносливости при асимметричных циклах можно приближенно определить по эмпирическим зависимостям между наибольшим напряжением цикла σmax, средним напряжением цикла σm, и предельной амплитудой цикла σa. Например,

где σв — предел прочности при статическом растяжении.

Приведенные соотношения дают представление лишь об общих закономерностях. Для расчетов необходимо пользоваться справочными данными, приводимыми в литературе по циклической долговечности.

Литература:
  1. Moustafine R. I., Bukhovets A. V., Sitenkov A. Y., Kemenova V. A., Rombaut P., Van den Mooter G. Eudragit® E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit® L 100 copolymers. Molecular Pharmaceutics. 2013; 10(7): 2630–2641. DOI: 10.1021/mp4000635.
  2. Wunderlich, «Geschichte der Medicin» (Штуттгардт, 1958).
  3. Мирский, «Хирургия от древности до современности. Очерки истории.» (Москва, Наука, 2000, 798 с.).
  4. https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B5%D0%BB_%D0%B2%D1%8B%D0%BD%D0%BE%D1%81%D0%BB%D0%B8%D0%B2%D0%BE%D1%81%D1%82%D0%B8.
  5. https://www.smalley.ru/stati/predel-prochnosti.
  6. https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B5%D0%BB_%D0%BF%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D0%B8.
  7. https://inzhener-info.ru/razdely/konstruirovanie/tsiklicheskaya-prochnost/predely-vynoslivosti.html.
  8. Киржанова Е. А., Хуторянский В. В., Балабушевич Н. Г., Харенко А. В., Демина Н. Б. Методы анализа мукоадгезии: от фундаментальных исследований к практическому применению в разработке лекарственных форм. Разработка и регистрация лекарственных средств. 2014; 3(8): 66–80. DOI: 10.33380/2305-2066-2019-8-4-27-31.
  9. Wise, «Review of the History of Medicine» (Л., 1967).
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector