Растяжение-сжатие.

Внутренние усилия при растяжении-сжатии.

Осевое (центральное) растяжение или сжатие прямого бруса вызывается внешними силами, вектор равнодействующей которых совпадает с осью бруса. При растяжении или сжатии в поперечных сечениях бруса возникают только продольные силы N. Продольная сила N в некотором сечении равна алгебраической сумме проекции на ось стержня всех внешних сил, действующих по одну сторону от рассматриваемого сечения. По правилу знаков продольной силы N принято считать, что от растягивающих внешних нагрузок возникают положительные продольные силы N, а от сжимающих — продольные силы N отрицательны (рис. 5).

правило знаков для продольных сил

Чтобы выявить участки стержня или его сечения, где продольная сила имеет наибольшее значение, строят эпюру продольных сил, применяя метод сечений, подробно рассмотренный в статье:

Анализ внутренних силовых факторов в статистически определимых системах

Ещё настоятельно рекомендую взглянуть на статью:

Расчёт статистически определимого бруса

Если разберёте теорию в данной статье и задачи по ссылкам, то станете гуру в теме «Растяжение-сжатие» =)

Напряжения при растяжении-сжатии.

Определенная методом сечений продольная сила N, является равнодействующей внутренних усилий распределенных по поперечному сечению стержня (рис. 2, б). Исходя из определения напряжений, согласно выражению (1), можно записать для продольной силы:

где σ — нормальное напряжение в произвольной точке поперечного сечения стержня.

Чтобы определить нормальные напряжения в любой точке бруса необходимо знать закон их распределения по поперечному сечению бруса. Экспериментальные исследования показывают: если нанести на поверхность стержня ряд взаимно перпендикулярных линий, то после приложения внешней растягивающей нагрузки поперечные линии не искривляются и остаются параллельными друг другу (рис.6, а). Об этом явлении говорит гипотеза плоских сечений (гипотеза Бернулли): сечения, плоские до деформации, остаются плоскими и после деформации.

механизм деформации растяжения

Так как все продольные волокна стержня деформируются одинаково, то и напряжения в поперечном сечении одинаковы, а эпюра напряжений σ по высоте поперечного сечения стержня выглядит, как показано на рис.6, б. Видно, что напряжения равномерно распределены по поперечному сечению стержня, т.е. во всех точках сечения σ = const. Выражение для определения величины напряжения имеет вид:

Таким образом, нормальные напряжения, возникающие в поперечных сечениях растянутого или сжатого бруса, равны отношению продольной силы к площади его поперечного сечения. Нормальные напряжения принято считать положительными при растяжении и отрицательными при сжатии.

Деформации при растяжении-сжатии.

Рассмотрим деформации, возникающие при растяжении (сжатии) стержня (рис.6, а). Под действием силы F брус удлиняется на некоторую величину Δl называемую абсолютным удлинением, или абсолютной продольной деформацией, которая численно равна разности длины бруса после деформации l1 и его длины до деформации l

Отношение абсолютной продольной деформации бруса Δl к его первоначальной длине l называют относительным удлинением, или относительной продольной деформацией:

При растяжении продольная деформация положительна, а при сжатии — отрицательна. Для большинства конструкционных материалов на стадии упругой деформации выполняется закон Гука (4), устанавливающий линейную зависимость между напряжениями и деформациями:

где модуль продольной упругости Е, называемый еще модулем упругости первого рода является коэффициентом пропорциональности, между напряжениями и деформациями. Он характеризует жесткость материала при растяжении или сжатии (табл. 1).

Таблица 1

Модуль продольной упругости для различных материалов

модуль продольной упругости для различных материалов

Абсолютная поперечная деформация бруса равна разности размеров поперечного сечения после и до деформации:

Соответственно, относительную поперечную деформацию определяют по формуле:

При растяжении размеры поперечного сечения бруса уменьшаются, и ε’ имеет отрицательное значение. Опытом установлено, что в пределах действия закона Гука при растяжении бруса поперечная деформация прямо пропорциональна продольной. Отношение поперечной деформации ε’ к продольной деформации ε называется коэффициентом поперечной деформации, или коэффициентом Пуассона μ:

Экспериментально установлено, что на упругой стадии нагружения любого материала значение μ = const и для различных материалов значения коэффициента Пуассона находятся в пределах от 0 до 0,5 (табл. 2).

Таблица 2

Коэффициент Пуассона.

коэффициент пуассона для материалов

Абсолютное удлинение стержня Δl прямо пропорционально продольной силе N:

Данной формулой можно пользоваться для вычисления абсолютного удлинения участка стержня длиной l при условии, что в пределах этого участка значение продольной силы постоянно. В случае, когда продольная сила N изменяется в пределах участка стержня, Δl определяют интегрированием в пределах этого участка:

Произведение (Е·А) называют жесткостью сечения стержня при растяжении (сжатии).

Механические свойства материалов.

Основными механическими свойствами материалов при их деформации являются прочность, пластичность, хрупкость, упругость и твердость.

Прочность — способность материала сопротивляться воздействию внешних сил, не разрушаясь и без появления остаточных деформаций.

Пластичность — свойство материала выдерживать без разрушения большие остаточные деформации. Неисчезающие после снятия внешних нагрузок деформации называются пластическими.

Хрупкость — свойство материала разрушаться при очень малых остаточных деформациях (например, чугун, бетон, стекло).

Идеальная упругость — свойство материала (тела) полностью восстанавливать свою форму и размеры после устранения причин, вызвавших деформацию.

Твердость — свойство материала сопротивляться проникновению в него других тел.

Рассмотрим диаграмму растяжения стержня из малоуглеродистой стали. Пусть круглый стержень длинной l0 и начальным постоянным поперечным сечением площади A0 статически растягивается с обоих торцов силой F.

растягивание стержня до разрушения

Диаграмма сжатия стержня имеет вид (рис. 10, а)

диаграмма растяжения стали

где Δl = l — l0 абсолютное удлинение стержня; ε = Δl / l0 — относительное продольное удлинение стержня; σ = F / A0 — нормальное напряжение; E — модуль Юнга; σп — предел пропорциональности; σуп — предел упругости; σт — предел текучести; σв — предел прочности (временное сопротивление); εост — остаточная деформация после снятия внешних нагрузок. Для материалов, не имеющих ярко выраженную площадку текучести, вводят условный предел текучести σ0,2 — напряжение, при котором достигается 0,2% остаточной деформации. При достижении предела прочности в центре стержня возникает локальное утончение его диаметра («шейка»). Дальнейшее абсолютное удлинение стержня идет в зоне шейки ( зона местной текучести). При достижении напряжением предела текучести σт глянцевая поверхность стержня становится немного матовой — на его поверхности появляются микротрещины (линии Людерса-Чернова), направленные под углом 45° к оси стержня.

примеры разрушения материалов

Расчеты на прочность и жесткость при растяжении и сжатии.

Опасным сечением при растяжении и сжатии называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение. Допускаемые напряжения вычисляются по формуле:

где σпред — предельное напряжение (σпред = σт — для пластических материалов и σпред = σв — для хрупких материалов); [n] — коэффициент запаса прочности. Для пластических материалов [n] = [nт] = 1,2 … 2,5; для хрупких материалов [n] = [nв] = 2 … 5, а для древесины [n] = 8 ÷ 12.

Расчеты на прочность при растяжении и сжатии.

Целью расчета любой конструкции является использование полученных результатов для оценки пригодности этой конструкции к эксплуатации при минимальном расходе материала, что находит отражение в методах расчета на прочность и жесткость.

Условие прочности стержня при его растяжении (сжатии):

При проектном расчете определяется площадь опасного сечения стержня:

При определении допускаемой нагрузки рассчитывается допускаемая нормальная сила:

Расчет на жесткость при растяжении и сжатии.

Работоспособность стержня определяется его предельной деформацией [ l ]. Абсолютное удлинение стержня должно удовлетворять условию:

Часто дополнительно делают расчет на жесткость отдельных участков стержня.

Следующая важная статья теории:

Изгиб балки

2.5. Расчеты на жесткость при растяжении

Растяжение-сжатие.

Растяжение-сжатие.

Растяжение-сжатие.

Растяжение-сжатие.

Растяжение-сжатие.

Растяжение-сжатие.

Растяжение-сжатие.

2.5. РАСЧЕТЫ НА ЖЕСТКОСТЬ ПРИ РАСТЯЖЕНИИ Иногда наряду с условиями прочности добавляют ограничения на перемещение некоторых элементов конструкции, то есть вводят условие жесткости δmax ≤ [δ], где [δ] — величина допускаемого перемещения (изменение положения в пространстве) некоторого контролируемого сечения. Деформацию растягиваемого или сжимаемого элемента вычисляют по формуле (2. 4) закона Гука. Пример 2.1. Выполнить поверочный и проектный расчеты ступенчатого бруса. По результатам проектного расчета построить эпюру перемещения сечений. Исходные данные представлены в таблице: Решение Разбиваем брус на участки. Границей участка считают: а) точку приложения силового фактора; б) изменение размеров или формы поперечного сечения; в) изменение материала бруса. Брус одним концом защемлен, и в опоре возникает реакция R (рис. 2.5, а). Для нахождения внутренних усилий при подходе слева направо, придется определять опорную реакцию R. Указанную процедуру можно избежать при подходе справа налево, то есть со свободного конца. 1. Поверочный расчет А. Определение внутренних усилий. Применяем метод сечений. Рассекаем брус на две части в произвольном сечении участка I. Отбрасываем одну из частей (левую). Заменяем действие отброшенной части внутренним усилием NI. Внутреннее усилие всегда принимаем положительным, растягивающим; его вектор направлен от сечения (рис. 2.5, б). Уравнение равновесия составляем проецируя все силы на продольную ось x бруса Знак минус указывает на то, что усилие является сжимающим. Аналогично находим внутренние усилия на втором и третьем участках (рис. 2.5, в и г): Строим эпюру внутренних усилий — график, изображающий закон изменения внутренних усилий по длине бруса. Параллельно оси бруса проводим базисную линию (абсциссу графика) и по нормали к ней откладываем найденные выше значения внутренних усилий (ординаты графика) в выбранном масштабе с учетом знака. Положительные значения откладываем выше базисной линии, отрицательные — ниже (рис. 2.5, д). Поскольку в пределах каждого из участков внутренние усилия неизменны, высоты ординат графика — постоянны и огибающие линии (жирные) — горизонтальны. Б. Определение напряжений на каждом из участков: Строим эпюру напряжений. В. Коэффициенты запаса прочности по отношению к пределу текучести: Вывод: недогружен участок I, перегружен участок III. Для этих участков выполняем проектный расчет. 2. Проектный расчет Из условия прочности при растяжении σ = ≤ [σ] выполняем подбор размеров поперечных сечений I и III участков, предварительно назначив допускаемое напряжение Нормативный коэффициент запаса прочности выбрали из рекомендуемого диапазона значений [nт] = 1,3-2,2. 3. Определение перемещений сечений А. Удлинения каждого из участков Б. Перемещения сечений. За начало отсчета принимаем сечение d. Оно защемлено, его перемещение равно нулю δd = 0. Строим эпюру перемещений. Выводы 1. Выполнен поверочный расчет ступенчатого бруса. Прочность одного из элементов обеспечена; другого — избыточна; третьего — не- достаточна. 2. Из условия прочности при растяжении подобраны площади попе- речных сечений двух элементов конструкции. 3. По результатам проектного расчета вычислены деформации каждого элемента конструкции. Крайнее сечение переместится относительно защемления на 217 мкм в сторону от защемления. Пример 2.2. К стальному брусу постоянного сечения вдоль его оси приложены две силы. По условиям эксплуатации введено ограничение на величину перемещения [δ] концевого сечения С. Из условий прочности и жесткости подобрать размер поперечного сечения. Решение 1. Определение внутренних усилий Покажем возникающую в опоре реакцию R; определение внутренних усилий методом сечений начнем вести со свободного конца. Ось х — про- дольная ось бруса (на рисунке не показана). I участок: ∑ x = 0; − NI + F1 = 0; ⇒ NI = F1 = 40кН. II участок: ∑ x = 0; − NII + F1 − F2 = 0; ⇒ NII = F1 − F2 = 40 − 60 = −20кН . F1 = 40 кН; F2 = 60 кН; a = 0,5 м; [σ] = 180 МПа; [δ] = 1 мм. Строим эпюру внутренних усилий. Опасным является участок I, на котором действует Nmax = — 40 кН (пластичные материалы одинаково сопротивляются деформации растяжения и сжатия). 2. Проектный расчет из условия прочности Из условия прочности при растяжении находим требуемую площадь поперечного сечения стержня 3. Проектный расчет из условия жесткости Перемещение сечения С является суммой двух слагаемых: откуда требуемая площадь поперечного сечения стержня Сравнивая результаты проектных расчетов из условия прочности и жесткости, назначаем большее из двух значений площади поперечного сечения: 2,22 и 1,5 см2, удовлетворяющее обоим условиям: А ≥ 2,22 см2. Пример 2.3. Жесткая балка (ее деформацией пренебречь) подперта стальным стержнем (подкосом). Проверить прочность стержня. Определить допускаемую нагрузку F для заданного размера поперечного сечения стержня. Выполнить проектный расчет из условия прочности и жесткости ([δF] — допускаемая величина перемещения балки в точке приложения силы). Решение 1. Поверочный расчет А. Определение внутреннего усилия в стержне Рассекаем стержень на две части (рис. а). Отбрасываем одну из частей и показываем внешнюю нагрузку F, внутреннее усилие N и две составляющих опорной реакции R (рис. б). Составляем такое уравнение равновесия, в которое не вошли бы опорные реакции. Усилие в стержне сжимающее. Б. Определение напряжения В. Коэффициент запаса прочности Фактический коэффициент запаса 1,06 не входит в рекомендуемый (нормативный) диапазон значений [nт]=1,3−2,3. Вывод: прочность недостаточна. 2. Определение допускаемой нагрузки на конструкцию для заданного размера поперечного сечения стержня Из условия прочности при растяжении σ = ≤ [σ] находим допускаемую нагрузку на стержень [N]≤ A⋅[σ]= 15⋅10−4 ⋅170⋅106 = 255 кН. Здесь допускаемое Нормативный коэффициент запаса по текучести назначили из рекомендуемого диапазона n[ т]=1,3−2,3. Из условия равновесия (см. этап 1) находим связь между допускаемой внешней нагрузкой [F] на конструкцию и внутренним усилием [N] в стержне: 3. Проектный расчет из условия прочности Требуемое значение площади поперечного сечения из условия прочности при растяжении: 4. Проектный расчет из условия жесткости Под действием внешней нагрузки стержень деформируется; сечения балки изменяют свое положение в пространстве. Установим связь между внутренним усилием, деформацией стержня и перемещением заданного сечения конструкции. Покажем схему в исходном и деформированном (пунктирные линии) состояниях (рис. в). Контролируемое перемещение сечения балки в точке D приложения силы δF связано с перемещением узла С точки прикрепления стержня к балке соотношением: Вследствие перемещения узла С стержень укорачивается на Δ = CC′⋅sinα. Деформацию стержня определяем по закону Гука: Здесь ℓ — длина стержня, определяется из схемы нагружения (рис. а). Тогда из условия жесткости конструкции: Сравнивая результаты проектных расчетов из условия прочности и жесткости, назначаем большее из двух значений: 28,2 и 33,3 см2, удовлетворяющее обоим условиям, то есть А ≥ 33,3 см2. Выводы 1. Выполнен поверочный расчет стержня. Прочность элемента конструкции недостаточна. 2. Для заданного размера поперечного сечения нагрузка F, приложенная к конструкции, не должна превышать 42,5 кН. 3. Из условий прочности и жесткости при растяжении найдено значение площади поперечного сечения элемента конструкции, удовлетворяющее обоим условиям: 33,3 см2.

Жёсткость

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 20 июля 2020; проверки требуют 3 правки.

Удлинение δ цилиндрической пружины, вызванное приложенной осевой силой F

Механи́ческая жёсткость (также жёсткость) — способность твёрдого тела, конструкции или её элементов сопротивляться деформации[1][2][3] (изменению формы и/или размеров) от приложенного усилия вдоль выбранного направления в заданной системе координат.

Обратная к характеристике называется механической податливостью. Для случая упругих деформаций в записи закона Гука рассматривается как физико-геометрическая характеристика сечения элемента конструкции и равна произведению модуля упругости материала и соответствующей геометрической характеристики сечения.

Общие сведения[править | править код]

Механическая жёсткость является одним из важных факторов, определяющих работоспособность конструкции и имеет такое же, а иногда и большее значение для обеспечения её надёжности, как и прочность. Конструкция может быть прочной, но не жёсткой, поскольку значительные деформации могут привести к появлению опасных с точки зрения прочности напряжений.

Недостаточная жёсткость и связанные с ней повышенные деформации могут вызвать потерю работоспособности конструкции по различным причинам. Повышенные деформации могут нарушить равномерность распределения нагрузки и вызвать их концентрацию на отдельных участках, создавая высокие местные напряжения, что может привести к разрушению. Недостаточная жёсткость корпусных деталей нарушает взаимодействие размещенных в них механизмов, вызывая повышенное трение и износ в кинематических парах, появление вибраций. Недостаточная жёсткость валов и опор зубчатых передач изменяет нормальное зацепление колес, что приводит к быстрому усталостному выкрашиванию и износу их рабочих поверхностей. Кроме того, увеличиваются углы перекосов подшипников, уменьшается их долговечность, а в отдельных случаях даже недостаточная жёсткость приводит к быстрому разрушению. В технологических машинах, выполняющих точные операции, недостаточная жёсткость системы «станок — инструмент — устройство — деталь» не позволяет получить размеры с заданной точностью.

Оценка жёсткости[править | править код]

Параметры для определения жёсткости балки на двух опорах

Оценивать жёсткость принято коэффициентом жёсткости — отношением усилия (силы), прилагаемого к конструкции, к максимальной деформации, вызванные этой силой.

Коэффициент жёсткости тела является мерой сопротивления упругого тела деформации. Для упругого тела при нагрузке (например, растяжение или сжатие стержня вызванные приложенной силой), жёсткость определяется, как:

где — сила, приложенная к телу, — деформация, вызванная силой вдоль направления действия силы (например, изменение длины растянутой пружины или прогиб балки).

В системе СИ коэффициент механической жёсткости измеряется в ньютонах на метр (Н/м).

К определению крутильной жёсткости

Для упругого тела можно рассматривать и механическую жёсткость при деформации кручения, тогда коэффициент крутильной (торсионной) жёсткости :

где — приложенный к телу крутящий момент, — угол закручивания тела по оси приложения крутящего момента.

В системе СИ коэффициент жёсткости при кручении обычно измеряется в ньютон-метрах на радиан (Н·м/рад).

Механическая жесткость и упругие свойства материала[править | править код]

Между модулем упругости материала и жёсткостью детали, изготовленной из этого материала есть существенная разница. Модуль упругости — это свойство материала; механическая жёсткость — это свойство конструкции или её компонента, а следовательно, она зависит не только от материала, из которого он изготовлен, но и от геометрических размеров, которые описывают этот компонент. То есть модуль упругости — это интенсивная величина (не зависит от размеров объекта), характеризующий материал; с другой стороны, механическая жёсткость — это экстенсивная характеристика (зависимая от размеров) твердого тела, которая зависит как от материала, так и от его характерных геометрических размеров, формы и граничных условий.

Например, для элемента в виде бруса, испытывающего растяжения или сжатия, коэффициент осевой жёсткости равен:

где — площадь поперечного сечения, перпендикулярной линии приложения усилия, — модуль Юнга (модуль упругости первого рода), — длина элемента.

Для деформации сдвига коэффициент жёсткости:

где — площадь поперечного сечения в плоскости сдвига, — модуль сдвига (модуль упругости второго рода) для данного материала, : — высота элемента смещения перпендикулярно направлению сдвига.

Для коэффициента жёсткости при кручении цилиндрического стержня:

где — полярный момент инерции, — модуль сдвига (модуль упругости второго рода) для данного материала, : — длина элемента.

По аналогии коэффициент жёсткости для условий чистого изгиба:

, где — модуль сдвига (модуль упругости второго рода) для данного материала, — осевой момент инерции, — длина элемента.

Расчёт на жёсткость[править | править код]

Расчёт на жёсткость предусматривает ограничение упругих перемещений допустимыми величинами. Значения допустимых перемещений ограничены условиями работы сопряженных деталей (зацепление зубчатых колес, работа подшипников в условиях изгиба валов) или технологическими требованиями (точность обработки на металлорежущих станках).

Различают собственную жёсткость деталей, обусловленную деформациями всего материала деталей рассматриваются как балки, пластины, оболочки с идеализированными опорами, и контактную жёсткость, которая связана с деформациями поверхностных слоев материала в зоне контактного взаимодействия деталей. Если площадь контакта мала, то возникают существенные контактные деформации, и их расчёт производится по формулам Герца. Преимущественно при значительных нагрузках основную роль играет собственная жёсткость, однако, в прецизионных машинах или устройствах при относительно малых нагрузках контактные деформации играют значительную роль и могут даже превышать собственные.

При большой контактной площади деформации, обусловленные смятием микронеровностей, определяются по эмпирическим формулам с использованием экспериментально установленных коэффициентов контактной податливости.

Условия обеспечения жёсткости записываются в виде[прояснить]:

Мероприятия по обеспечению механической жёсткости[править | править код]

Главным практическим средством повышения жёсткости является изменение геометрических параметров детали с целью обеспечения достаточной жёсткости формы. Главными конструктивными средствами повышения жёсткости деталей и конструкций являются:

  • по возможности устранения деформации изгиба, как невыгодной с точки зрения обеспечения жёсткости и прочности, замена её деформацией растяжения (сжатия)
  • для деталей, работающих на изгиб, выбор рациональных типов опор и их размещения, исключение по возможности консолей и уменьшения их длины, стремясь к равномерному распределению нагрузки по длине;
  • рациональное, но без роста массы, увеличение моментов инерции сечений путем удаления материала от нейтральной оси, усиление закладных участков и участков перехода от одного сечения к другому;
  • для коробчатых деталей — использование криволинейных выпуклых стенок;
  • блокировки деформаций путем установления раскосов (для рам), обечаек и перемычек (для полых тонкостенных цилиндров), оребрения тонких стенок, рифление плоских поверхностей крышек и тому подобное.

Наряду с собственной жесткостью в соединениях деталей значительную роль играет контактная жёсткость, которая может определять точность движения контактирующих деталей, вызвать дополнительные динамические нагрузки, влиять на износостойкость поверхностей и их долговечность, на рассеяние энергии колебаний.

Важнейшими конструктивными мерами по повышению контактной жёсткости являются:

  • уменьшение шероховатости поверхности;
  • создание натяжения или предварительное затягивание в соединениях;
  • создание слоя смазки между контактирующими поверхностями.

Примечания[править | править код]

Источники[править | править код]

  • Писаренко Г. С., Цветок А. Л., Уманский Е. С. Сопротивление материалов. Учебник / Под ред. Г. С. Писаренко — М.: Высшая школа, 1993. — 655 с. — ISBN 5-11-004083-4
  • Миняйло А. В., Тищенко Л. М., Мазоренко Д. И. и др. Детали машин: учебник. — М .: Агроосвита 2013. — 448 c. — ISBN 978-966-2007-28-2
  • Решетов Д. Н. Детали машин. Учебник для студентов машиностроительных и механических специальностей вузов. 4-ое издание, переработанное и дополненное. — М .: Машиностроение, 1989. — 496 с. — ISBN 5-217-00335-9

Ссылки[править | править код]

  • Чаюн И. М. Жесткость конструкций и их элементов // Труды Одесского Политехнического университета. — 2010. — № 1-2. — С. 11-16.
Литература:
  1. Sprengel, «Pragmatische Geschichte der Heilkunde».
  2. Sprengel, «Pragmatische Geschichte der Heilkunde».
  3. Frédault, «Histoire de la médecine» (П., 1970).
  4. https://xn--80axfaegeoa.xn--p1ai/Theory/Theory-3.html.
  5. https://dx-dy.ru/sopromat/raschet-na-zestkost-pri-rastyazenii.html.
  6. https://ru.wikipedia.org/wiki/%D0%96%D1%91%D1%81%D1%82%D0%BA%D0%BE%D1%81%D1%82%D1%8C.
  7. Киржанова Е. А., Хуторянский В. В., Балабушевич Н. Г., Харенко А. В., Демина Н. Б. Методы анализа мукоадгезии: от фундаментальных исследований к практическому применению в разработке лекарственных форм. Разработка и регистрация лекарственных средств. 2014; 3(8): 66–80. DOI: 10.33380/2305-2066-2019-8-4-27-31.
  8. Moustafine R. I., Bobyleva V. L., Bukhovets A. V., Garipova V. R.,Kabanova T. V., Kemenova V. A., Van den Mooter G. Structural transformations during swelling of polycomplex matrices based on countercharged (meth)acrylate copolymers (Eudragit® EPO/Eudragit® L 100-55). Journal of Pharmaceutical Sciences. 2011; 100:874–885. DOI:10.1002/jps.22320.
  9. М.П. Киселева, З.С. Шпрах, Л.М. Борисова и др. Доклиническое изучение противоопухолевой активности производного N-гликозида индолокарбазола ЛХС-1208. Сообщение II // Российский биотерапевтический журнал. 2015. № 3. С. 41-47.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector