Сложное сопротивление.

Сложное сопротивление — одновременное действие на брус нескольких простых видов деформаций: растяжения-сжатия, сдвига, кручения и изгиба. Например, совместное действие растяжения и кручения.

Косой изгиб.

Косой изгиб — это изгиб, при котором плоскость действия изгибающего момента не совпадает ни с одной из главных плоскостей инерции сечения бруса.

В общем случае при косом изгибе в поперечных сечениях возникают четыре внутренних силовых фактора: поперечные силы Qx, Qy и изгибающие моменты Mx , My. Таким образом, косой изгиб можно рассматривать как сочетание двух плоских поперечных изгибов во взаимно перпендикулярных плоскостях. Влиянием поперечных сил на прочность и жесткость бруса обычно пренебрегают.

Косой изгиб

Нейтральная линия при косом изгибе всегда проходит через центр тяжести сечения.

Условие прочности при косом изгибе:

где ymax, xmax — координаты точки сечения, наиболее удаленной от нейтральной оси.

Для сечений, имеющих две оси симметрии, максимальные напряжения будут в угловых точках, а условие прочности:

где Wx , Wy — осевые моменты сопротивления сечения относительно соответствующих осей.

Если материал бруса не одинаково работает на растяжение и на сжатие, то проверку его прочности выполняют по допускаемым и растягивающим и сжимающим напряжениям.

Прогибы при косом изгибе определяют, используя принцип независимости действия сил, геометрическим суммированием прогибов вдоль направления главных осей:

Изгиб с растяжением (сжатием).

При таком виде сложного сопротивления внутренние силовые факторы приводятся к одновременному действию продольной силы N и изгибающего момента M.

Рассмотрим случай центрального растяжения бруса в сочетании с косым изгибом. На консольный брус действует сила F, составляющая некоторый угол с продольной осью бруса и не лежащая ни в одной из главных плоскостей сечения. Сила приложена в центре тяжести торцевого сечения бруса:

изгиб с растяжением

К расчёту на прочность бруса при изгибе с растяжением:

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Разложим силу F на три составляющие. Тогда внутренние силовые факторы приобретут следующий вид:

Напряжение в произвольно выбранной точке Д, имеющей координаты (хд, уд), пренебрегая действием поперечных сил, будут определяться по формуле:

где А — площадь поперечного сечения.

Если сечение имеет две оси симметрии (двутавр, прямоугольник, круг), наибольшее напряжение определяют по формуле:

Условие прочночти имеет вид:

Также как и в случае косого изгиба, если материал бруса не одинаково работает на растяжение и на сжатие, то проверку прочности проводят по допускаемым растягивающим и сжимающим напряжениям.

Внецентренное растяжение или сжатие.

При таком виде сложного сопротивления продольная сила приложена не в центре тяжести поперечного сечения бруса.

внецентренное растяжение или сжатие

К расчёту на прочность бруса при внецентренном растяжении

a — нагружение бруса; б — внутренние силовые факторы в поперечном сечении;

Приведём силу F к центру тяжести:

где уF , xF — координаты точки приложения силы F.

В произвольной точке Д, с координатами (хд, уд), нормальное напряжение определяется по фомуле:

Условие прочности для бруса, изготовленного из материала, одинаково сопротивляющегося растяжению и сжатию, имеет вид:

Для бруса, который неодинаково работает на растяжение и на сжатие проверка прочности по допускаемым растягивающим и сжимающим напряжениям.

Кручение с изгибом.

Сочетание деформаций изгиба и кручения характерно для работы валов машин.

Кручение с изгибом

Напряжения в сечениях вала возникают от кручения и от изгиба. При изгибе появляются нормальные и касательные напряжения:

Напряжения в сечениях вала от кручения и от изгиба

Эпюры напряжений в сечении бруса при кручении с изгибом

Нормальное напряжение достигает максимума на поверхности:

Касательное напряжение от крутящего момента Mz достигает максимума также на поверхности вала:

Из третьей и четвёртой теории прочности:

При кручении с изгибом условие прочности имеет вид:

Изгиб с растяжением (сжатием)

Содержание:

  • Изгиб с растяжением (сжатием)

Изгиб с растяжением (сжатием)

  • Изгиб с натяжением (сжатие)) Расчет совместного действия изгиба и растяжения можно свести к следующим двум основным видам: а) расчет на действие продольных и поперечных нагрузок; б) расчет на действие внецентрового натяжения. Отдельно необходимо учитывать изгиб при растяжении (сжатии) кривой SA (br). Сложный изгиб за счет растяжения (сжатия) прямого стержня. В целом(рис. 325, а) в поперечном сечении изгибается момент L4g и M y в двух

плоскостях, поперечная сила Qz и Quy и продольная сила N(рис. 325, б). В этом случае возникают сложные изгибы Рис триста двадцать пять Растянуть или сжать. Нормальное напряжение в любой точке поперечного сечения (12.19) Изгибающие моменты, продольные силы и координаты точек, в которых рассчитываются напряжения, заменяются здесь их знаками

. Можно предположить, что напряженное состояние в опасной точке является линейным, игнорируя тангенциальное напряжение от боковой силы. Поэтому Людмила Фирмаль

условия интенсивности имеют простейшую форму: (12.20 утра)) Если сечение имеет две оси симметрии и выступающий угол, то одна из угловых точек опасна. Напряжение в ее aprds- 338, согласно формуле (12.19) или так 1: 1 при изгибе на сжатие приведенная выше формула может быть применена только к короткому стержню высокой жесткости, поскольку потеря устойчивости возможна в случае тонкого длинного стержня (№ 19). (12.21)

Символы в этом выражении объединяются на основе комбинации или комбинации с выражением (12.19). В случае плоского изгиба в основной плоскости UX с растяжением (сжатием) трехчленное кольцо является одним из двухчленных колец: Эти формулы используются при расчете прочности плоских рам и арок малой кривизны. В этом случае опасность представляет та часть, где действует максимальный изгибающий момент L4max. В случае

  • расчета стержня с поперечным сечением любой формы для определения опасных точек сечения, метод определения положения нейтральной линии должен сначала установить все положения нейтральной линии, которые будут рассмотрены ниже при рассмотрении смещенного от центра участка. Пример 51. Выберите сечение двутавровой балки плоского стального каркаса (рис. 326, а) [о]=1600 кгс / см2*. Путем определения эталонной реакции и графика мг и / в(Фиг. 326, b, C), участок d правой стойки опасен, L1m AKS=57 * 104kgf * cm; N=-63,9 * 102kgf. Опасные точки этого участка находятся слева(рис. Здесь, потому что напряжение от Mz и L’is добавлено

арифметически, 326, g). В соответствии с формулой (12.22) условие прочности записывается следующим образом: 57 * 101 Макс° 63.9 * 102 Ф кг / СМ1 1600кг / см2. (12.23) Условия интенсивности It-339z включают две неизвестные величины? И еще F. In в большинстве случаев напряжение o>от изгиба больше продольной силы, поэтому при выборе сечения}опустите второе слагаемое первым, а приблизительное значение U7″ 11,^л ш «с м3= = 3 5 6°’ 3 — Затем, согласно ассортименту (Приложение 1), нужно выбрать двутавровый пучок, но нужно выбрать двутавровый пучок № 27, выбрать 371 см3, F=40,2 см2 и проверить интенсивность выбранного участка.»—1″ «~ ^ ) ‘2 ~ ~ C g s / cm2″1526+159kgs / cm2=1695KGE^m2. Перенапряжений 1695-1600 100% и 6%>5%, Шестьсот тысяч Поэтому, принимая следующее большее число двутавровых балок 27a

(U’2=407 см», F= = 43. 2cm2), необходимо увеличить размер поперечного сечения Людмила Фирмаль

Вытягивать прямого луча нецентральный (обжатие). Ядро секции. Смещенное от центра растяжение(сжатие)-это комплекс, который предполагает растяжение (сжатие) таким образом, что балка растягивается силой, параллельной оси балки и в результате не совпадающей с осью балки 327), и проходит через точку Р, пусть одна сила Р называется силовым полюсом, параллельным оси бруса и поперечным сечением ее выступает как 327)координаты этой точки в системе главной оси сечения обозначаются gr, а расстояние этой точки до оси x, которое называется эксцентриситетом, секция R9M G= = Рур при таких нагрузках. Следовательно, напряжение в любой точке поперечного сечения добавляется к осевым растягивающим силам N

и Hi — и Mg4-y-g+ Моменты 13mf для напряжения на изгиб/ — А я-нет!’jy АF ЮЖД Если вы поставите его здесь вместо N, Mv, Mz, вы получите P г о= — у-(12.24) (12.25)) 340 этой формуле можно придать несколько иную форму, выражая главный момент инерции через радиус инерции: (12.26) Для выявления опасных точек сложного профиля рекомендуется создать нейтральную линию поперечного сечения. Угроза сечения будет представлять собой точку, наиболее удаленную от нейтральной линии. Уравнение нейтральной линии получается путем уравнивания правой части уравнения (12.26) к нулю

, указывая координаты точек на нейтральной линии, проходящих через y0 и z0: g L2O+^Y o=-1-(12.27) 328):zH= — v -; (2.28) следует из зависимости (12.28), где нейтральная линия пересекает координатные оси в точке, принадлежащей квадранту, противоположному тому, в котором расположена точка p. Теперь, если вы проведете параллель к нейтрали на контуре разреза, вы найдете наиболее подчеркнутые точки A и B в расширенной и сжатой зонах разреза(рис. 328). Напряжение на этих точках и их силовое состояние имеет вид П Жульничество-Р Касательная

П Omnn- & в ЖП (12.29) +2л+уа^< ?CES2l, точка A и точка b-2, соответственно-I E. фигура напряжения o показана на рисунке. Для 328 прямоугольных поперечных сечений удобнее представить условия прочности в виде: °Тиахс-Р Б— 1— jp A<[O j. (12.30) Формулы (12.29)и (12.30) также эффективны в случае сил сжатия, когда отсутствует риск продольного изгиба. Ядро секции. До сих пор нейтральные линии изображались как проходящие через поперечное сечение, но в целом они, вероятно, выйдут за его пределы. На самом деле, если сила P приложена к центру 341тяжести, и нейтральная линия проходит бесконечно, поэтому напряжение в этом случае равномерно

распределяется по поперечной плоскости. По мере увеличения эксцентриситета е (рис. 329) нейтральная линия приближается к положению с поперечным сечением и силой Р(рис. Например, позиция 329 D3) сначала касается контура секции. При дальнейшем увеличении эксцентриситета нейтральная линия будет пересекать поперечное сечение, а нормальное напряжение сечения будет иметь оба знака. Рис триста двадцать девять Интересно установить область такого расстояния силы р от оси, при котором нормальное напряжение всего поперечного сечения становится одинаковым знаком. Эта область называется основной секцией. Это важно для брусков, изготовленных

из материалов, не сопротивляющихся растяжению (например, кирпич, бетон, серый чугун). Таким образом, сердцевина поперечного сечения представляет собой область вокруг центра тяжести поперечного сечения, и если нагрузка вне центра находится в области сердцевины, то нормальное напряжение во всех точках поперечного сечения имеет один знак. Чтобы построить сердцевину сечения, укажите различные положения нейтральной линии, касательной к контуру сечения, а затем примените силу Р по следующему уравнению, вытекающему из Формулы (12.28).): Вычисленные

координаты определяют точки, лежащие на границе ядра разреза. Для облегчения построения основного сечения используются следующие свойства нейтральной линии: когда нейтральная линия вращается вокруг неподвижной точки и контура сечения, она используется для приложения силы ок.- 342∙этой характеристики достаточно, чтобы заменить координаты точки а (стена,ОА), находящейся на нейтральной линии, уравнением (12.27). Возьми В Урва Г 1. (12.32) Фактически уравнение zqA=const(12.32), UOL=const является уравнением прямой относительно координат точек приложения силы P-(UR1 2P). Поэтому, чтобы построить ядро сечения фигуры,

нужно нарисовать ряд нейтральных позиций линий, совпадающих со сторонами сечения. Построим, например, сердцевину сечения прямоугольного БКД(рис. 330). Нейтральная линия совместима со стороной CD (позиция 1-1). Очевидно, в этом случае Б Ы и 2 * — 0 0 * Тогда из Формулы (12.31)) УР= Это считается I2 _ ООО; 12bh22′ Таким образом, определяются координаты точек G ядер Chay и I. Выровняйте нейтральную линию по рекламной стороне (позиция 2-2). Иметь х И / Четыре. Ан° » 2 Тогда координаты точки 2 ′ ядра Аналогичным образом определяются координаты точек 3-3 и 4-4, соответствующие

положениям нейтральных линий 3 ‘и 4′. С момента перехода нейтральной линии из одной стороны в другую она вращается вокруг угловой точки поперечного сечения, и точки силы движутся по прямой, образуя контур ядра. Итак, сердцевиной сечения будет ромб с диагональю, равной одной трети соответствующей стороны сечения. Пример 52. Построить сердцевину сечения для кругового сечения(рис. 331). В круге все центральные оси являются главными. Таким образом, если в любой точке А соприкасается с нейтральной

линией 1-1, то точка D также находится в проходящем диаметре 343 точки L, и ее координаты равны: Очевидно, можно сделать вывод, что благодаря симметрии сечения ядро сечения также становится окружностью с радиусом Рис 332Fig. Триста, тридцать, тридцать, тридцать, тридцать, тридцать три Конструкция центроплана для двутавровой балки (рис. 332), канал (фиг. 333) и треугольник(рис. 334) лидер рекомендует выполнять себя.

Смотрите также:

  • Решение задач по сопротивлению материалов

8.2. Изгиб с растяжением

Изгиб с растяжением

Изгиб с растяжением 2

Изгиб с растяжением 3

Изгиб с растяжением 4

Изгиб с растяжением 5

Изгиб с растяжением 6

Изгиб с растяжением 7

Изгиб с растяжением 8

Изгиб с растяжением 9

Изгиб с растяжением — частный случай сложного сопротивления, при котором на брус действуют продольные и поперечные нагрузки, пересекающие ось бруса. В общем случае в поперечных сечениях возникают пять внутренних усилий: действующие в двух плоскостях изгибающие моменты Mz, My, поперечные силы Qz, Qy, а также продольная сила N. Возникает сложный изгиб с растяжением или сжатием. Пренебрегая касательными напряжениями от поперечных сил Qz, Qy (для длинных балок с отношением ℓ/h > 10 их влияние незначительно), можно считать напряженное состояние в опасных точках линейным. Внецентренное растяжение или сжатие Внецентренное растяжение — частный случай изгиба с растяжением, при котором брус растягивается силами, параллельными оси бруса так, что их равнодействующая не совпадает с осью бруса, а проходит через точку Р, называемую полюсом силы. Внутренние усилия и напряжения В произвольном сечении х бруса (рис.8.7, а) методом сечений определяем внутренние усилия Рис. 8.6. Примеры деталей и узлов, работающих при внецентренном нагружении: а — болт-костыль; б — пружина сцепления; в — сварное соединение Отличны от нуля три внутренних усилия (рис. 8.7, б), от которых возникают нормальные напряжения, действующие по одной из трех пар граней (рис. 8.7, в); две другие пары граней свободны от напряжений. Имеет место линейное напряженное состояние. Напряжения в произвольной точке являются суммой трех слагаемых Учитывая, что отношение i = — радиус инерции сечения, получим О правиле знаков внутренних усилий. Формула (8.10) выведена для случая положительной растягивающей силы N и изгибающих моментов Mz, My, вызывающих растягивающие напряжения в точке, принадлежащей первой четверти осей координат (где x > 0 и y > 0). Поэтому оси координат поперечного сечения бруса следует направлять так, чтобы полюс P (точка приложения силы) находился в первом квадранте. Если сила, приложенная к брусу, сжимающая, то ее числовое значение будет со знаком минус. Анализ формулы (8.10) 1. Отсутствие координаты х свидетельствует о неизменности напряжений вдоль оси бруса. 2. В случае приложения силы в центр тяжести сечения (zP = 0, yP = 0) напряжения в любой точке сечения постоянны и равны σ = F/A, то есть центральное растяжение является частным случаем внецентренного. Рис. 8.7. Схема к определению внутренних усилий и напряжений при внецентренном приложении силы 3. Независимо от значений координат полюса Р напряжение в центре тяжести сечения (yцт =0, zцт = 0), σцт = F/A. 4. Переменные z и y в первой степени, следовательно, формула (8.10) является уравнением прямой и нормальные напряжения распределяются по линейному закону, значит должна быть нейтральная линия, на которой напряжения равны нулю. Уравнение нейтральной линии при внецентренном растяжении Нейтральная линия (нейтральная ось) — геометрическое место точек, в которых нормальное напряжение в поперечном сечении равно нулю. Приравняем нулю уравнение (8.10). Поскольку F/A ≠ 0, то выражение в скобках равно нулю Переменные z, y в первой степени, следовательно, нормальные напряжения в сечении распределяются по линейной зависимости. Полученное выражение приведем к виду уравнения прямой в отрезках, где a и b — отрезки, отсекаемые линией на осях координат. В нашем случае уравнение нейтральной линии будет записано как Свободный член полученного уравнения не равен нулю, следовательно, нейтральная линия через начало координат не проходит. Отрезки, отсекаемые нейтральной линией на осях y и z, соответственно равны: По найденным значениям отрезков проводят нейтральную линию и находят точки В и С, наиболее удаленные от нее (рис. 8.9). Выполняют это простым геометрическим построением, проводя касательные к сечению, параллельные нейтральной оси. Найденные точки — опасные, поскольку напряжения в них наибольшие по величине. Рис. 8.8. Уравнение прямой в отрезках и график прямой линии, известные из школьного курса Уравнения (8.12), связывающие координаты полюса Р — точки приложения внешней нагрузки с положением нейтральной линии, являются гиперболической функцией. Чем ближе полюс Р к центру тяжести сечения (значения yP, zP уменьшаются), тем нейтральная линия проходит дальше и в пределе стремится к бесконечности. И, наоборот, по мере отдаления точки приложения силы от центра тяжести нейтральная линия асимптотически приближается к нему. Однако пересечь центр тяжести сечения нейтральная линия не может (см. анализ формулы (8.10)). В центре тяжести σцт = F/A (рис. 8.9), поскольку yцт = 0 и zцт = 0 (подставьте в (8.10)). Нейтральная линия может разделять поперечное сечение на области, в которых действуют напряжения разных знаков. Некоторые материалы (чугун, силумин, керамика, кирпичная кладка…) хорошо сопротивляются сжатию и плохо — растяжению. Поэтому необходимо уметь определять такую область приложения нагрузки, в которой не возникают напряжения разных знаков. Ядро сечения Ядро сечения — область вокруг центра тяжести сечения, при приложении нагрузки внутри которой, напряжения во всем сечении будут одного знака. Контур ядра сечения строят путем окатывания нейтральной линией контура поперечного сечения, то есть решают задачу обратную той, в которой определяли положение нейтральной линии: куда следует прикладывать силу, чтобы нейтральная линия не пересекала контур сечения, а только касалась его. Задают несколько положений нейтральной линии, касательной к сечению (например, н.л.1, н.л.2, н.л.3), определяют координаты точек пересечения этих линий с осями координат (например, zн.л.1, yн.л.1). Затем, преобразуя уравнение (11), находят Рис. 8.10. Определение координат отрезков нейтральной линии для построения ядра сечения Рис. 8.9. Эпюра напряжений в поперечном сечении Нейтральная линия соответствующие им координаты точек ядра сечения (точки 1, 2, 3): Так как при переходе нейтральной линии с одной стороны на другую (например, от н.л 3 к н.л 4) она поворачивается вокруг угловой точки сечения, то точка приложения силы перемещается по прямой (на рис. 8.10 отрезок 3 — 4), образуя контур ядра. Пример 8.4. Построить ядро сечения для круга диаметром d. Решение. Квадрат радиуса инерции круга: Задаем положение нейтральной линии 1-1, касательной к окружности. Ее координаты: Координаты точки ядра сечения: Из симметрии сечения относительно его центра тяжести следует, что при других положениях нейтральной линии на окружности диаметром d точки ядра сечения образуют концентрический с ней круг диаметром d/4. Пример 8.5. Построить ядро сечения для прямоугольника с размером сторон bЧh. Решение. Квадраты радиусов инерции: Задаем положение нейтральной линии 1-1, касательной к верхней грани прямоугольника. Ее ко- ординаты: zн.л 1 = ∞; yн.л1 = h/2. Координаты соответствующей точки ядра сечения: Аналогично для нейтральной линии 2-2: zн.л 2 = b/2; yн.л 2 = ∞. Учитывая симметрию прямоугольного сечения относительно осей z и y, задаем положения нейтральных линий на противоположных сторонах прямоугольника и получаем еще две точки. Соединяя все точки, получаем ядро сечения в виде ромба с диагоналями, равными h/3 и b/3. Пример 8.6. Построить ядро сечения для швеллера № 20. Решение. Из таблицы сортамента выпишем исходные данные и выполним рисунок швеллера. Последовательно задаем положение нейтральной линии (I-I, II-II, III-III, IV-IV), касающейся контура сечения, и вычисляем координаты точек ядра сечения. Расчеты представлены в табличном виде. Ядро сечения имеет вид четырехугольника, асимметричного относительно оси ординат. Положение ядра сечения зависит лишь от формы и размеров поперечного сечения, но не зависит от величины приложенной силы. Расчет на прочность при внецентренном нагружении Поверочный расчет выполняют, используя условие прочности Проектный расчет обладает особенностью, связанной с тем, что геометрические характеристики, входящие в условие прочности содержат искомый размер поперечного сечения в разной степени. Площадь А измеряется в м2, а моменты сопротивления W в м3. Попытка выразить искомый yн.л. = h/2 = 20/2 = 10 см; zн.л. = ∞; размер из условия прочности приводит к трансцендентной функции, то есть аналитической функции, не являющейся алгебраической. Проектный расчет выполняют методом итераций 1 [от лат. iteratio — повторение]. В первом приближении, пренебрегая одним из внутренних усилий, — продольной силой N — подбирают размер сечения только из условия прочности при изгибе. Полученный размер подставляют в исходное уравнение и выполняют следующую пробу. Процесс повторяют до тех пор, пока невязка — разность размеров последующей и предыдущей проб, не достигнет заданной наперед малости. Пример 8.7. (Винокуров А. И. Сборник задач … 5.35). Подобрать диаметр стержня выпускного клапана. При расчете использовать усилие F в момент открывания клапана в конце рабочего хода поршня. Решение. Сила давления газов на тарелку клапана 533441Н Внутренние усилия в сечении 1-1 стержня клапана (по модулю): N = F; M = F•e. Условие прочности: По обе стороны от знака неравенства искомый диаметр — имеем трансцендентное уравнение, которое решаем методом приближений: Метод последовательных приближений, при котором каждое новое приближение вычисляют исходя из предыдущего; начальное приближение выбирается в достаточной степени произвольно. Дано: p = 1,5 МПа; e = 12 мм; D = 35 мм; [σ] = 210 МПа Разность между последним и предпоследним приближениями Процесс подбора прекращаем, принимаем d = 10 мм. Проверка: Напряжения изгиба больше напряжений растяжения в 6,9 раза Пример 8.8. (Винокуров А. И. Сборник задач … 5.38.). Из расчета на прочность определить размер h скобы струбцины. Решение. Условие прочности при внецентренном растяжении плоской фигуры σ=+≤[σ] где A = b•h; W = b•h2/6; M = F(a+h/2). Условие прочности: Требуемый размер скобы: Размер h в обеих части неравенства. Полученное уравнение — трансцендентное. Решаем его методом последовательных приближений. В первом приближении принимаем h в скобках под корнем равным нулю: h0 = 0. Тогда Невязка подбора 100 25,4 % Следующее приближение 101,58 мм. Невязка подбора 100 4,5 % Следующее приближение 102,54 мм. Невязка подбора 100 0,95 % невязка менее 1 %, поэтому выходим из цикла подбора. Принимаем h = 103 мм. Проверка: Сопоставим вклады от изгиба и растяжения в общее напряжение: Напряжения от изгиба в 8,24 раза превышают напряжения от растяжения. Полученное соотношение можно сделать более благоприятным снизив долю растягивающих напряжений от изгиба за счет уменьшения плеча е изгибающего момента. На практике применяют тавровое и двутавровое сечения, смещая центр тяжести с ближе к линии действия силы и располагая больше материала в области растягивающих напряжений, к которым хрупкие материалы более чувствительны. Рис. 8.11. Примеры выполнения поперечного сечения бруса, подверженного действию внецентренного растяжения

Литература:
  1. Moustafine R. I., Bobyleva V. L., Bukhovets A. V., Garipova V. R.,Kabanova T. V., Kemenova V. A., Van den Mooter G. Structural transformations during swelling of polycomplex matrices based on countercharged (meth)acrylate copolymers (Eudragit® EPO/Eudragit® L 100-55). Journal of Pharmaceutical Sciences. 2011; 100:874–885. DOI:10.1002/jps.22320.
  2. Renouard, «Histoire de la medicine» (П., 1948).
  3. Харенко Е. А., Ларионова Н. И., Демина Н. Б. Мукоадгезивные лекарственные формы. Химико-фармацевтический журнал. 2009; 43(4): 21–29. DOI: 10.30906/0023-1134-2009-43-4-21-29.
  4. https://xn--80axfaegeoa.xn--p1ai/Theory/Theory-9.html.
  5. https://9219603113.com/izgib-s-rastyazheniem-szhatiem/.
  6. https://dx-dy.ru/sopromat/izgib-s-rastyazeniem.html.
  7. Харенко Е. А., Ларионова Н. И., Демина Н. Б. Мукоадгезивные лекарственные формы. Химико-фармацевтический журнал. 2009; 43(4): 21–29. DOI: 10.30906/0023-1134-2009-43-4-21-29.
  8. Ковнер, «Очерки истории M.».
  9. Ковнер, «Очерки истории M.».
  10. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Противоопухолевая активность соединения ЛХС-1208 (N-гликозилированные производные индоло[2,3-а]карбазола) // Российский биотерапевтический журнал 2010. № 1. С. 80.
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector