Техническая механика

Сопротивление материалов

Деформация кручения

Расчет цилиндрических винтовых пружин

В технике наиболее распространены цилиндрические винтовые пружины из стали круглого поперечного сечения, работающие на растяжение или сжатие. Покажем порядок расчета такой пружины, имеющей небольшой угол подъема витков (α ≤1 5°).

как рассчитать пружину

В качестве примера рассмотрим цилиндрическую винтовую пружину с диаметром D винтовой оси, диаметром d проволоки, числом витков n, сжимаемую силой F (рис. 5).

Для определения внутренних силовых факторов применим известный нам метод сечений. Рассечем пружину плоскостью, проходящей через ось, и отбросим нижнюю часть пружины. Ввиду того, что угол α подъема витков мал, будем считать сечение витка поперечным, т. е. кругом диаметром d.

Рассматривая равновесие верхней части пружины (рис. 6), видим, что в поперечном сечении витка возникают два внутренних силовых фактора:

— поперечная сила Q = F

— крутящий момент МКР = FD / 2.

Отсюда следует, что в поперечном сечении витка пружины действуют только касательные напряжения сдвига и кручения.

Будем считать, что напряжения сдвига распределены по сечению равномерно, а напряжения кручения определяются, как при кручении прямого кругового цилиндра.

Эпюры распределения напряжений сдвига и кручения, а также эпюра суммарных напряжений в точках горизонтального диаметра сечения представлены на рис. 6.

Из суммарной эпюры видно, что наибольшие касательные напряжения возникают в точке В, ближайшей к оси пружины:

τmax = τсдв + τкр = Q / S + Мкр / Wр = F / (πD3 / 4) + (FD / 2) / πd3 / 16),

расчет пружины

откуда получаем:

τmax = (8FD / πd3) / (d / 2D + 1).

Если пружина имеет относительно большой средний диаметр и изготовлена из относительно тонкой проволоки, то первое слагаемое в скобках (соответствующее напряжению сдвига) значительно меньше единицы и в практических расчетах им можно пренебречь; тогда:

τmax = (8FD / πd3).

Для приближенного расчета цилиндрических пружин на прочность применяется формула:

τmax = (8FD / πd3) ≤ [τ] (1)

Поскольку пружины обычно изготавливают из высококачественной стали, допускаемое напряжение принимают равным в пределах [τ] = 200….1000 МПа.

***

Расчет осадки цилиндрической пружины

Далее выведем формулу для определения уменьшения высоты (осадки) λ пружины. Для этого мысленно разобьем пружину на бесконечно малые участки длиной dl, которые ввиду малости длины будем считать прямолинейными, и учитывая только потенциальную энергию деформации кручения, получим:

U = ∫l [(Мкр2 dl / (2GIp)] = Мкр2 l / (2GIp),

где l = πDn — длина проволоки пружины.

Работа силы F, приложенной к пружине статически, будет равна W = Fλ / 2.

Так как W =U, то Мкр = FD / 2, следовательно Ip = πd4 / 32, тогда получаем:

Fλ / 2 =[(Fλ / 2)2 πDn] / (2G πd4 / 32), откуда: λ = 8 FD3n / (Dd4).

Эту формулу можно записать в таком виде:

λ = F / С,

где: С = Gd4 / 8D3n — коэффициент жесткости пружины.

При λ = 1, С = F, поэтому коэффициент жесткости численно равен силе, вызывающей осадку, равную единице длины.

Отношение среднего диаметра витков к диаметру проволоки обозначают Сn и называют индексом пружины:

Сn = D / d.

Обычно индекс пружин равен Сn = 4….12.

При более точных расчетах винтовых пружин учитывают кривизну их витков и вводят в числитель формулы (1) поправочный коэффициент К ≈ 1 + 1,45 / Cn.

***

Пример расчета цилиндрической пружины

Определить диаметр проволоки стальной пружины, если под действием силы F = 800 Н ее осадка λ = 39 мм.

расчет пружин на усадку и жесткость Индекс пружины Сn= 6, число витков n = 14.

Модуль упругости стали пружины G = 8 х 104 Мпа, допускаемое напряжение [τ] = 450 МПа.

Решение.

Используя формулу для определения индекса пружины Сn = D / d, получим: D = Сn d. Подставляем это значение D в формулу для определения осадки пружины:

λ = 8 FD3n / (Dd4) = 8 FD3n / (Gd4) = 8 F Сn3 d3 n / (Gd4), откуда найдем d и после подстановки числовых значений получим:

d = 8 F Сn3 n / λ G = 8 х 800 х 106 х 14 / 39 х 10-3 х 8 х 104 х 106 = 7 х 10-3 м = 7 мм.

Итак, диаметр проволоки цилиндрической пружины должен быть не менее 7 мм, а средний диаметр самой пружины D = Сn d = 6 х 7 = 42 мм.

***

Материалы раздела «Кручение»:

  • Понятие о кручении цилиндрического бруса (вала)
  • Построение эпюр крутящих моментов
  • Деформации и напряжения, возникающие при кручении
  • Расчеты на прочность и жесткость при кручении
  • Расчет цилиндрических винтовых пружин

Сочетание основных деформаций

ФОРМУЛЫ И СПОСОБЫ РАСЧЕТА ПРУЖИН

ИЗ СТАЛИ КРУГЛОГО СЕЧЕНИЯ

(по ГОСТ 13765-86) МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЗМЕРОВ ПРУЖИН ПО ГОСТ 13765-86

1. Исходными величинами для определения размеров пружин являются силы F1 и F2 , рабочий ход h, наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке vmax, выносливость Np и наружный диаметр пружины D1 (предварительный).Если задана только одна F2 сила то вместо рабочего хода h для подсчета берут величину рабочей деформации S 2, соответствующую заданной силе.

2. По величине заданной выносливости Np предварительно определяют принадлежность пружины к соответствующему классу по табл. 1.

3. По заданной силе F2 и крайним значениям инерционного зазора δ вычисляют по формуле (2) значение силы F3.

4. По значению F3, пользуясь табл. 2, предварительно определяют разряд пружины.

5. По табл. 11-17 находят строку, в которой наружный диаметр витка пружины наиболее близок к предварительно заданному значению D1. В этой же строке находят соответствующие значения силы F3 и диаметра проволоки d.

6. Для пружин из закаливаемых марок сталей максимальное касательное напряжение τ3 находят по табл. 2, для пружин из холоднотянутой и термообработанной τ3 вычисляют с учето значений временного сопротивления Rm. Для холоднотянутой проволоки Rm определяют из ГОСТ 9389-75, для термообработанной — из ГОСТ 1071-81.

7. По полученным значениям F3и τ3, a также по заданному значению F2 по формулам (5) и (5а) вычисляют критическую скорость vk и отношение vmax / vk, подтверждающее или отрицающее принадлежность пружины к предварительно установленному классу. При несоблюдении условий vmax / vk < 1 пружины I и II классов относят к последующему классу или повторяют расчеты, изменив исходные условия. Если невозможно изменение исходных условий, работоспособность обеспечивается комплектом запасных пружин.

8. По окончательно установленному классу и разряду в соответствующей таблице на параметры витков пружин, помимо ранее найденных величин F3, D1 и d, находят величины c1 и s3, после чего остальные размеры пружины и габариты узла вычисляют по формулам (6)-(25).

КЛАССЫ И РАЗРЯДЫ ПРУЖИН

Ниже рассматриваются винтовые цилиндрические пружины сжатия и растяжения из стали круглого сечения с индексами i = d/D от 4 до 12.

Приводимые данные распространяются на пружины для работы при температурах от -60 до +120°С в неагрессивных средах. Пружины разделяют на классы, виды и разряды (см. ниже).

Класс пружин характеризует режим нагружения и выносливости, а также определяет основные требования к материалам и технологии изготовления.

Разряды пружин отражают сведения о диапазонах сил, марках применяемых пружинных сталей, а также нормативах по допускаемым напряжениям.

Отсутствие соударения витков у пружин сжатия определяется условием vmax / vk < 1,

где,

vmax — наибольшая скорость перемещения подвижного конца пружины при нагружении или при разгрузке, м/с;

vk — критическая скорость пружин сжатия, м/с (соответствует возникновению соударения витков пружины от сил инерции).

ВЫНОСЛИВОСТЬ И СТОЙКОСТЬ ПРУЖИН

При определении размеров пружин необходимо учитывать, что при vmax> vk, помимо касательных напряжений кручения, возникают контактные напряжения от соударения витков, движущихся по инерции после замедления и остановок сопрягаемых с пружинами деталей. Если соударение витков отсутствует, то лучшую выносливость имеют пружины с низкими напряжениями τ3, т.е. пружины класса I по табл. 1, промежуточную — циклические пружины класса II и худшую — пружины класса III.

При наличии интенсивного соударения витков выносливость располагается в обратном порядке, т.е. повышается не с понижением, а с ростом τ3. В таком же порядке располагается и стойкость, т.е. уменьшение остаточных деформаций или осадок пружин в процессе работы.

1. КЛАССЫ ПРУЖИН по ГОСТ 13765-86

Класс пружинВид

пружин

НагружениеВыносливость NF

(установленная безотказная наработка), циклы,

не менее

Инерционное соударение витков
IСжатия и растяженияЦиклическое1×107Отсутствует
IIЦиклическое и статическое1×105
IIIСжатияЦиклическое2×103Допускается

Примечание. Указанная выносливость не распространяется на зацепы пружин растяжения.

2. РАЗРЯДЫ ПРУЖИН по ГОСТ 13765-86

Сила пружины при максим. деформации F3, HДиаметр проволоки (прутка) d, ммМатериалТвердость после термооб­работки HRCМакси­мальное касательное напряжение при кручении τ3, МПа
Марка сталиСтандарт на заготовку
I11 — 8500,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,3RmГОСТ 13766
21 — 800Проволока классов II и IIА по ГОСТ 9389ГОСТ 13767
22,4 — 8001,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,32Rm
3140 — 600003,0 — 12,060С2А, 65С2ВА, 70СА3 по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5560ГОСТ 13768
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
42800 — 18000014 — 7060С2А, 65С2ВА, 70С3А, 60С2, 60С2ХА, 60С2ХФА, 51ХФА по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5480ГОСТ 13769
II11,5 — 14000,2 — 5,0по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,5RmГОСТ 13770
21,25 — 1250Проволока класса II и IIA по ГОСТ 9389ГОСТ 13771
37,5 — 12501,2 — 5,051ХФА-Ш по ГОСТ 14959Проволока по ГОСТ 10710,52Rm
3236 — 100003,0 — 12,060С2А, 65С2ВА по ГОСТ 14959Проволока по ГОСТ 1496347,5…53,5960ГОСТ 13772
65Г по ГОСТ 14959Проволока по ГОСТ 2771
51ХФА по ГОСТ 14959Проволока по ГОСТ 1496345,5…51,5
44500 — 28000014 — 7060С2А, 60С2, 65С2ВА, 70С3А, 51ХФА, 65Г, 60С2ХФА, 60С2ХА по ГСТ 14959Сталь горячекат. круглая по ГОСТ 259044,0…51,5800ГОСТ 13773
III112,5 — 10000,3 — 2,8по ГОСТ 1050 и ГОСТ 1435Проволока класса I по ГОСТ 93890,6RmГОСТ 13774
2315 — 140003,0 — 12,060С2А, 65С2ВА, 70С3А по ГОСТ 14959Проволока по ГОСТ 1496354,5…58,013509ГОСТ 13775
36000 — 2000014 — 2560С2А, 65С2ВА, 70С3А по ГОСТ 14959Сталь горячекат. круглая по ГОСТ 259051,5…56,01050ГОСТ 13776

Примечания:

1. Максимальное касательное напряжение при кручении приведено с учетом кривизны витков.

2. Rm — предел прочности пружинных материалов

Средствами регулирования выносливости и стойкости циклических пружин в рамках каждого класса при неизменных заданных значениях рабочего хода служат изменения разности между максимальным касательным напряжением при кручении τ3 и касательным напряжением при рабочей деформации τ2.

Возрастания разности τ3 — τ2 обусловливают увеличение выносливости и стойкости циклических пружин всех классов при одновременном возрастании размеров узлов. Уменьшение разностей τ3 — τ2 сопровождается обратными изменениями служебных качеств и размеров пространств в механизмах для размещения пружин.

Для пружин I класса расчетные напряжения и свойства металла регламентированы так, что при νmax/ νk ≤ 1 обусловленная выносливость пружин при действии силы F1 (сила пружины при предварительной деформации) не менее 0,2F3 (сила пружины при максимальной деформации) обеспечивается при всех осуществимых расположениях и величинах рабочих участков на силовых диаграммах разности напряжений τ3 — τ2, и τ2 — τ1, (касательное напряжение при предварительной деформации).

Циклические пружины II класса при νmax/ νk ≤ 1 в зависимости от расположения и размера рабочих участков могут быть поставлены в условия как неограниченной, так и ограниченной выносливости.

Циклические пружины III класса при всех отношениях νmax/ νk и относительном инерционном зазоре пружин δ не более 0,4 характеризуются ограниченной выносливостью, поскольку они рассчитаны на предельно высокие касательные напряжения кручения, к которым при νmax/ νk > 1 добавляются контактные напряжения от соударения витков.

Все статические пружины, длительно пребывающие в деформированном состоянии и периодически нагружаемые со скоростью νmax/ νk, относятся ко II классу. Вводимые ограничения расчетных напряжений и свойств проволоки (см. табл. выше) обеспечивают неограниченную стойкость статических пружин при остаточных деформациях не более 15% максимальной деформации s3.

Допустимые остаточные деформации статических пружин регламентируются координацией сил пружины при рабочей деформации s3 на силовых диаграммах, причем увеличение разности F3 — F2 способствует уменьшению остаточных деформаций.

Технологические средства регулирования выносливости и стойкости пружин определяются документацией на технические требования.

ВЫПОЛНЕНИЕ РАБОЧИХ ЧЕРТЕЖЕЙ ПРУЖИН СЖАТИЯ И РАСТЯЖЕНИЯ

1. Пружина сжатия из проволоки круглого сечения с неподжатыми и нешлифованными крайними витками.

2. Пружина сжатия с поджатыми по 3/4 витка с каждого конца и шлифованными на 3/4 окружности опорными поверхностями.

3. Пружины растяжения из проволоки круглого сечения с зацепами, открытыми с одной стороны и расположенными в одной плоскости.

ОПОРНЫЕ ВИТКИ ПРУЖИН СЖАТИЯ ДЛИНА ПРУЖИН СЖАТИЯ

Длину пружин сжатия рекомендуется принимать Lo <= (D1 — d).

Можно брать Lo до 5 х (D — d), но тогда пружины должны работать на направляющем стержне или в направляющей гильзе. При этом между пружиной и сопрягаемой деталью выдерживают зазор z в зависимости от величины среднего диаметра D пружины.

Значение зазора z, мм

Похожие документы:

чертеж пружины сжатия;

чертеж пружины параболоидной;

расчет пластинчатой пружины изгиба;

расчет пружин кручения из круглой проволоки;

ГОСТ 13764-86 » Пружины винтовые цилиндрические сжатия и растяжения из стали круглого сечения. Классификация»;

ГОСТ 13766-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13767-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13768-86 «Пружины винтовые цилиндрические сжатия и растяжения 1 класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13769-86 «Пружины винтовые цилиндрические сжатия 1 класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13770-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13771-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13772-86 «Пружины винтовые цилиндрические сжатия и растяжения II класса, разряда 3 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13773-86 «Пружины винтовые цилиндрические сжатия II класса, разряда 4 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13774-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 1 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13775-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 2 из стали круглого сечения. Основные параметры витков»;

ГОСТ 13776-86 «Пружины винтовые цилиндрические сжатия III класса, разряда 3 из стали круглого сечения. Основные параметры витков».

Расчет винтовых цилиндрических одножильных пружин из проволоки круглого сечения.

Расчет винтовых цилиндрических одножильных пружин растяжения и сжатия.

Рассмотрим расчет винтовых цилиндрических одножильных пружин растяжения и сжатия. Основные геометрические параметры винтовых цилиндрических пружин из проволоки круглого поперечного сечения (см. рис. 1):

d — диаметр проволоки;

Dн и D — наружный и средний диаметры пружины;

c=D/d — индекс пружины;

t — шаг пружины;

α — угол подъема витков;

L0 — длина развернутой пружины (без учета зацепов пружины). Податливость пружины прямо пропорциональна ее индексу c. Для увеличения податливости пружины индекс с принимают возможно большим; практически c=4…12.

Значения индекса с пружины принимают в зависимости от диаметра проволоки:

d, мм< 2,53…56…12
c5…124…104…9

Пружины сжатия Рис. 1

С увеличением индекса пружины той же жесткости можно сократить ее длину путем увеличения диаметра, а с уменьшением индекса можно уменьшить диаметр пружины путем увеличения ее длины.

виток пружины растяжения или сжатия Рис. 2

В любом поперечном сечении витка пружины растяжения или сжатия при работе возникают (рис. 2, а) сила F, направленная по осевой линии пружины, и момент М=FD/2, вектор которого перпендикулярен осевой линии пружины. Сила F раскладывается на поперечную F1=F cos α и продольную F2=F sin α силы. При разложении момента М по осевой линии витка пружины и перпендикулярному ему направлению в поперечном сечении проволоки пружины возникают:

крутящий T=FD cos α/2

и изгибающий Ми=FD sin α/2 моменты. Так как угол α<10…12°, то изгибающий момент Ми значительно меньше крутящего Т, а продольная сила F2 значительно меньше поперечной силы F1 но, как показывают расчеты, касательные напряжения сдвига значительно меньше касательных напряжений кручения, поэтому для упрощения расчета пружин на прочность обычно учитывают лишь крутящий момент T, при этом приближенно принимают cos α=1, т. е. T=М=FD/2. Таким образом, расчет винтовой цилиндрической пружины растяжения или сжатия из проволоки круглого поперечного сечения производят по формуле

tau={8kFD}/(pi d^3)={8kFc}/(pi d^2)<=delim{[}{tau}{]},

где τ — расчетное максимальное напряжение в поперечных сечениях витков пружины;

[τ] — допускаемое напряжение для проволоки пружины; k — коэффициент влияния на напряжение кривизны витков и поперечной силы;

F — максимальная растягивающая или сжимающая сила. Формулой пользуются при проверочном расчете пружины, когда ее размеры известны. Значения коэффициента k принимают в зависимости от индекса пружины:

c45681012
k1,371,291,241,171,141,11

напряжение пружин при статических нагрузках Рис. 3

Допускаемое напряжение [τ] пружин при статических нагрузках можно принимать по графикам (рис. 3), где отдельные кривые относятся к пружинам из проволоки:

  • 1 — вольфрамовой и рояльной;
  • 2 — хромованадиевой;
  • 3 — углеродистой, закаленной в масле;
  • 4 — углеродистой холоднотянутой;
  • 5 — моиель-металла;
  • 6 — фосфористой бронзы;
  • 7 — специальной латуни.

При пульсирующей нагрузке с небольшим числом циклов допускаемые напряжения [τ] следует принимать в 1,25…1,5 раза ниже, чем по графикам.

При проектировочном расчете пружины диаметр проволоки

d=1.6 sqrt{kcF/delim{[}{tau}{]}},

значением индекса с пружины задаются. Диаметр d проволоки, вычисленный по формуле, окончательно согласовывают с соответствующим ГОСТом для пружинной проволоки.

Средний диаметр D пружины и наружный диаметр DH определяют по формулам

и

При расчетах различают следующие силы пружины (см. рис. 1 , а, б):

при предварительной деформации — F1

при рабочей деформации (соответствует наибольшему принудительному перемещению подвижного звена в механизме) — F2;

при максимальной деформации «(допускаемой) — F3.

Соответственно в формулах F=F3.

Обычно пружину устанавливают с действующей на нее начальной нагрузкой F1=(0,1…0,5)F2. Максимальная сила пружины F3=(1,05..,1,66)F2. При изменении силы пружины от F1 до F2 жесткость пружины

C=(F_2-F_1)/h,

где h — рабочий ход пружины, значение которого назначают или вычисляют по условиям работы механизма. Жесткость одного витка пружины

C_1={Gd}/(8c^3),

где G — модуль сдвига материала проволоки пружины. Для стали G=80000 МПа и, следовательно, для стальной пружины

где С1 — в Н/мм; d — в мм.

Число рабочих витков пружины

Полное число витков

где n2=1,5…2 — число опорных витков.

Деформация пружины

Подставив в формулу вместо F силы F1, F2, F3, получим деформации:

λ1 — предварительную,

λ2 — рабочую и

λ3 — максимальную. Максимальная деформация одного витка пружины

Шаг пружины в ненагруженном состоянии:

для пружины сжатия

для пружины растяжения

Высота пружины при максимальной деформации

где n3 — число зашлифованных витков. Высота пружины в свободном состоянии для пружины сжатия

для пружины растяжения

L_0=(n_1 +1)/d.

Высоту пружины при предварительной и рабочей деформации легко определить из (рис. 1, а, б). Длина развернутой пружины (без учета зацепов пружины растяжения)

Более подробный геометрический расчет винтовых цилиндрических пружин сжатия и растяжения из стальной проволоки круглого сечения дан в ГОСТ 13765-68.

Расчет винтовых цилиндрических одножильных пружин кручения.

Рассмотрим расчет винтовых цилиндрических одножильных пружин кручения. При работе пружины кручения в поперечных сечениях витков возникает момент М (см. рис. 3, б), равный внешнему моменту, закручивающему пружину, вектор которого направлен вдоль осевой линии пружины. При разложении момента М по осевой линии витка пружины и перпендикулярному ему направлению в поперечном сечении витка пружины возникают крутящий T=M sin α и изгибающий Ми=М cos α моменты. Так как изгибающий момент Ми значительно превышает крутящий момент Т (обычно угол α<12…15°), то пружины кручения рассчитывают только на изгиб по изгибающему моменту, при этом приближенно принимают Ми=M.

Таким образом, расчет винтовой цилиндрической пружины кручения из; проволоки круглого сечения производят на изгиб по моменту М, закручивающему пружину:

sigma_и={kM}/(0.1d^3)<=delim{[}{sigma_и}{]},

где σи — расчетное максимальное напряжение на изгиб в поперечных сечениях проволоки пружины;

[σи] — допускаемое напряжение на изгиб проволоки пружины;

k — коэффициент влияния кривизны витков. Рекомендуется принимать

Коэффициент влияния кривизны витков

где c=D/d — индекс пружины, принимаемый в зависимости от диаметра проволоки.

Формулой

sigma_и={kM}/(0.1d^3)<=delim{[}{sigma_и}{]},

пользуются при проверочном расчете пружины, когда ее размеры известны. При проектировочном расчете пружины диаметр проволоки

d=2.16 root{3}{{kM}/delim{[}{sigma_и}{]}}.

Шаг витков пружины t

где Δ=0,1…0,5 мм — зазор между витками.

При заданном значении угла закручивания пружины φ, рад, требуемое число рабочих витков пружины

n={phi E J}/(pi DM),

где J≈0,5d4 — осевой момент инерции площади сечения проволоки;

Е — модуль продольной упругости материала пружины.

Высота пружины

где hпр — высота одного прицепа пружины.

Длину L проволоки для изготовления пружины определяют по формуле

Литература:
  1. Bangun H., Aulia F., Arianto A., Nainggolan M. Preparation of mucoadhesive gastroretentive drug delivery system of alginate beads containing turmeric extract and anti-gastric ulcer activity. Asian Journal of Pharmaceutical and Clinical Research. 2019; 12(1):316–320. DOI: 10.22159/ajpcr.2019.v12i1.29715.
  2. Мустафин Р. И., Буховец А. В., Протасова А. А., Шайхрамова Р. Н., Ситенков А. Ю., Семина И. И. Сравнительное исследование поликомплексных систем для гастроретентивной доставки метформина. Разработка и регистрация лекарственных средств. 2015; 1(10): 48–50.
  3. А.В. Ланцова, Е.В. Санарова, Н.А. Оборотова и др. Разработка технологии получения инъекционной лекарственной формы на основе отечественной субстанции производной индолокарбазола ЛХС-1208 // Российский биотерапевтический журнал. 2014. Т. 13. № 3. С. 25-32.
  4. https://k-a-t.ru/tex_mex/4-kruchenie_5/index.shtml.
  5. https://alexfl.pro/inform/inform_raschet8.html.
  6. https://metiz-bearing.ru/prujina/raschet_vintovykh_tcilindricheskikh.html.
  7. Мустафин Р. И., Протасова А. А., Буховец А. В., Семина И.И. Исследование интерполимерных сочетаний на основе (мет)акрилатов в качестве перспективных носителей в поликомплексных системах для гастроретентивной доставки. Фармация. 2014; 5: 3–5.
  8. Pund A. U., Shandge R. S., Pote A. K. Current approaches on gastroretentive drug delivery systems. Journal of Drug Delivery and Therapeutics. 2020; 10(1): 139–146. DOI: 10.22270/jddt.v10i1.3803.
  9. Ковнер, «Очерки истории M.».
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector