Температурный коэффициент линейного расширения стали

Температурный коэффициент линейного расширения стали

03Х13Н8Д2ТМот -196 до 27…от -253 до 2710,2…8,5
03Х20Н16АГ6-269…-253…-233…-173…270,01…0,06…0,6…8,3…16,1
04Х18Н10-253…-223…-173…-73…273…8…10,8…15,4…15,5
07Х16Н16200…300…400…50011,7…12,1…12,5…12,9
07Х21Н5АГ7от -253 до 27…от -196 до 27…от -100 до 279,3…11,5…14,6
07Х21Н5АГ7100…200…300…400…500…600…70015,7…16…16,8…17,3…18…18,4…18,5
08Х12Н16БС4100…200…300…400…500…600…700…800…90016,5…16,7…17,4…17,7…17,9…18,1…18,3…18,6…18,7
08Х15Н15М3100…200…300…400…500…600…700…800…90016,9…17,7…18,1…18,5…18,8…19,1…19,5…19,7…19,9
08Х15Н15М3Б100…200…300…400…500…600…700…800…90016,4…17,1…17,4…17,7…17,7…17,9…18,3…18,6…18,8
08Х15Н7М2Ю100…200…300…400…500…600…700…800…9009,9…10,8…11,1…11,5…11,7…11,4…10,3…11,2…11,9
08Х16Н13М2Б400…500…600…700…80017,1…17,4…17,8…18,2…18,6
08Х17Н13М2Т100…200…300…400…500…600…70015,7…16,1…16,7…17,2…17,6…17,9…18,2
08Х17Н4100…200…300…400…500…600…700…800…9009,7…10,2…10,6…10,9…11,2…11,3…9,6…9,6…10,2
08Х17Н4М2100…200…300…400…500…600…700…800…90010,6…11…11,4…11,6…11,9…11,7…11,1…11,7…12,3
08Х18Н12Б100…200…300…40016…18…18…19
08Х18Н15Р4100…200…300…400…500…600…700…800…90016,5…17,4…17,8…18,1…18,5…18,9…19,2…19,5…19,8
08Х18Н15Р7100…200…300…400…500…600…700…800…90016,8…17,4…17,7…18,1…18,2…18,6…19…19,4…19,8
08Х18Н7Ю1100…200…300…400…500…600…700…80015,6…16,5…17,3…17,9…18,1…18,4…18,5…18,7
08Х21Н6М2Т100…200…300…400…500…600…700…800…9009,5…13,8…16…16…16,3…16,7…17,1…17,1…17,4
09Х14Н16Б100…200…300…400…500…600…700…80015,2…16,5…17,1…17,6…18…18,4…18,9…20,6
09Х14Н19В2БР1100…200…300…400…500…600…700…80015,2…16,3…17,2…17,6…18…18,1…18,6…18,6
10Х13Н16Б100…200…300…400…500…600…700…800…900…100016…16,9…17,7…18,3…18,6…18,8…19…19,3…19,6…19,7
10Х13Н2С2100…200…300…400…500…600…70010,8…11,4…11,8…12,3…12,7…13,1…13,3
10Х14Н14В2М100…200…300…400…500…600…700…800…90017…17,8…18,3…18,8…19…19,2…19,4…19,9…20,1
10Х14Н14В2МТ100…200…300…400…500…600…700…80017,2…17,2…17,5…18…18,5…18,6…18,9…19,3
10Х14Н18В2Б100…200…300…400…500…600…700…800…90016,5…17,4…17,6…18…18,1…18,2…18,5…19…19
10Х15Н9С3Б1100…200…300…400…500…600…700…80017,4…18,7…19,7…20,2…20,5…21…21,6…21,8
10Х16Н16В3МБР100…200…300…400…500…600…700…800…90017,1…17,1…17,1…17,9…18,2…18,5…18,8…19,1…19,2
10Х18Н15М3В2БК13300…400…500…600…700…80016,7…16,7…16,8…17…17,3…17,4
10Х18Н18Ю4Д100…200…300…400…500…600…700…800…90015,5…16,5…17…17,4…17,7…18,2…18,4…18,8…18,6
10Х18Н9ВМ300…400…500…600…700…80016,7…17,2…17,5…17,8…18…18,2
12Х18Н9100…200…300…400…500…600…700…800…900…100016,5…17,2…17,7…18,1…18,3…18,6…18,9…19,3…19,7…20,2
12Х18Н9В200…300…400…500…600…700…800…900…100016,5…17,1…17,6…18…18,4…18,8…19…19,2…19,4
12Х18Н9М100…200…300…400…500…600…70017,3…17,5…17,8…18…18,3…18,5…18,8
12Х18Н9М2С2100…200…300…400…500…600…700…800…900…100016,6…17…17,4…17,7…18…18,4…18,8…19,1…19,4…19,8
12Х18Н9С2100…200…300…400…500…600…70016,2…17,1…17,8…18,6…19,2…19,2…20,5
12Х18Н9Т-253…-223…-173…-73…270,8…3,3…8,4…14,3…16,7
12Х18Н9Т100…200…300…400…500…600…700…800…900…100016,6…17…17,6…18…18,3…18,6…18,9…19,3…19,5…20,1
12Х18Н9ТЛ100…200…300…400…500…600…70014,8…16…16,9…17,1…17,6…18…18,4
12Х18Н10Т127…227…427…727…102717,6…18…19,4…21,1…22,3
12Х18Н12Т100…200…300…400…500…600…700…800…90016,6…17…17,2…17,5…17,9…18,2…18,6…18,9…19,3
12Х21Н5Т-173…-73…277,9…10,4…11
12Х21Н5Т100…200…300…400…500…600…700…800…90010,2…14,4…16,8…16,8…17,4…17,5…17,7…18…18,5
12Х25Н16Г17АР100…200…300…400…500…600…700…80016,6…16,2…16,8…17,4…18…18,5…18,7…18,9
13Х12НВ2МФ100…200…300…400…500…60011…11,3…11,6…12…12,3…12,5
14Х17Н2100…200…300…400…50010,3…10,4…10,7…11,1…11,8
20Х13Н2100…200…300…400…500…60010,5…10,6…10,6…10,8…11,1…11,3
20Х14Н14В2СТ100…200…300…400…500…60016,1…16,7…17,2…17,4…17,8…18,2
20Х17Н1100…200…300…400…500…6008,1…8,8…10,3…10…10,5…10,5
20Х17Н2100…200…300…400…500…60010,5…10,7…10,9…10,8…11,2…11,3
20Х20Н11100…300…500…60017,3…17,8…18,4…18,7
20Х20Н14С2100…600…700…800…900…100016…18,1…18,3…18,5…18,8…19
20Х23Н18100…200…300…400…500…600…70014,9…15,7…16,6…17,3…17,5…17,9…17,9
30Х18Н9В2ФТ100…200…300…400…500…600…700…800…900…100015,4…15,6…15,9…16,3…16,6…17…17,4…17,8…18,4…19
31Х19Н9МВБТ100…200…300…400…500…600…700…800…900…100016,7…16,9…17,2…17,5…17,8…18,2…18,5…18,9…19,3…19,7
37Х12Н8Г8МФБ100…200…300…400…500…600…70016…16,9…17,7…18,5…19,5…19,9…20,2
45Х14Н14В2М300…500…700…90017…18…18…19
4Х15НГ7Ф2МС100…200…300…400…500…600…700…800…900…100017…17,7…18,4…19,1…20,5…20,8…22,8…22,8…23,3…24,6
Х13Н12М2В2Б1К10100…200…300…400…500…600…700…800…100015,6…15,8…16,5…16,9…17,1…17,3…17,7…18…18,6
Х13Н13В2Б100…200…300…400…500…600…700…800…90016,8…17,3…17,9…18,3…18,7…18,9…19,1…19,3…19,6
Х13Н13В2М2Б3К10100…200…300…400…500…600…700…800…900…100015,6…15,8…16,5…16,9…17,1…17,3…17,7…18…18,3…18,6
Х14Н14М2В2ФБТ400…500…600…700…80016,7…17,1…17,4…17,8…18,1
Х14Н14МВФБ100…200…300…400…500…600…70015,1…15,9…16,9…18…18,2…18,4…19
Х14Н18В2БР100…200…300…400…500…600…700…800…90015,9…16,5…17,2…17,6…18…18,3…18,6…18,7…19
Х15Н15М2К3ВТ100…200…300…400…500…60015,8…16,6…17,2…17,6…18,3…18,6
Х16Н14Б100…300…500…80016…18…18…19
Х16Н16В3МБ100…200…300…400…500…600…700…80015,8…16,8…17,3…17,6…17,8…17,9…18,1…18,2
Х16Н9М2100…200…300…400…500…600…70017…17,5…18…18,4…18,9…19,3…19,5
Х17Н5М2100…200…300…400…500…60012,1…13,7…14,3…14,6…14,8…14,8
Х18Н11Б100…200…300…400…500…600…700…800…90016,8…17,7…18,2…18,5…18,9…19…19,4…19,7…19,9
Х18Н12100…200…300…400…500…600…70016,8…17,2…17,6…17,8…18,2…18,5…18,8
Х18Н12М2Т100…200…300…400…500…600…70015,7…16,1…16,7…17,2…17,6…17,9…18,2
Х18Н12М3100…300…500…600…100016…16,2…17,5…18,6…20
Х18Н12МФТР100…200…300…400…500…600…700…800…90015,9…16,9…17,6…17,8…17,9…18,4…18,8…19…19,2
Х18Н14М2Б1400…500…600…70017,6…17,8…18,2…18,7
Х18Н15М3БЮР2100…200…300…400…500…600…700…800…90015…16,1…16,8…17,1…17,5…17,8…18,2…18,4…18,3
Х18Н15М3БЮР4100…200…300…400…500…600…700…800…90015,1…15,8…16,4…17,2…17,4…17,6…17,9…18,1…18,5
Х19Н10М2Ф3БК47100…200…300…400…500…600…700…800…90014,8…15…15,1…15,2…15,3…15,9…16,4…16,8…17,2
Х19Н14Б2100…200…300…400…500…600…70017…17,2…17,4…17,6…17,9…18,6…18,8
Х22Н9400…80017,5…18,5
Х25Н13АТ, Х25Н13Т500…90017,1…18,1

На фиг. 1 приведены величины длительной прочности в зависимости от температуры изделия. Из фиг. 1 следует, что аустенитные стали названных марок и близкие к ним по своему химическому составу теплостойкие стали, имеющие в своем составе 14-16% Сг, 12-16% Ni, не более 1-1,5% Мо, 2-3% Won 1-3%  [c.208]

Аустенитно-ферритные стали обладают большей жаропрочностью по сравнению с высокохромистыми сталями. Основным требованием к этим сталям является стабильность их строения. Изменение свойств некоторых аустенитно-ферритных сталей при обычной температуре в зависимости от их структуры представлено на рис. 13.8, а длительной прочности при 600° С — на рис. 13.9.  [c.209]

Так, длительная прочность материалов, работающих при повышенных температурах, оценивается напряжением, при котором образец при постоянной температуре не разрушается в течение заданного времени tp = 100, 1000, 10 ООО ч). При этом для жаропрочных сталей, наблюдается степенная зависимость между временем до разрушения и постоянно приложенным напряжением а  [c.110]

Влияние структурного состояния стали на предел длительной прочности изучено достаточно подробно [12], и показана зависимость жаропрочности от количества сорбитной составляющей в структуре.  [c.49]

Для деталей их жаропрочных сталей и сплавов, работающих при высоких температурах, оптимальным из условий усталостной и длительной прочности будет поверхностный слой с незначительным деформационным упрочнением, соответствующим примерно остаточной деформации, равной б = 1ч-4%, которая для каждого сплава должна устанавливаться в зависимости от рабочей температуры в условиях эксплуатации, или поверхностный слой, металл которого вообще не подвергался пластическому деформированию (без наклепа).  [c.202]

При содержании в сталях рассматриваемого типа до 7-9% Сг несколько увеличивается их сопротивление окислению и значительно повышается коррозионная стойкость в горячих средах продуктов переработки нефти. С увеличением содержания Мо до 1% в 7-9%-ных хромистых сталях еще больше повышается их длительная прочность. Сопротивление ползучести и длительная прочность несколько изменяются в зависимости от длительности испытания, что необходимо учитывать при применении этих сталей.  [c.128]

Рис. 14. Зависимость длительной прочности сталей переходного класса

На рис. 41 показана зависимость длительной прочности от степени легирования сталей и сплавов.  [c.180] Необходимо иметь в виду, что между скоростью ползучести и пределом длительной прочности нет однозначной зависимости. Иногда сталь со структурой, обеспечивающей меньшую скорость ползучести, может разрушиться под действием одинаковых напряжений и температуры раньше, чем та же сталь со структурой, обусловливающей большую скорость ползучести.  [c.86]

Аустенитные стали лучше переносят кратковременные перегревы выше расчетной температуры, так как в них менее резко выражена зависимость длительной прочности от температуры, чем в перлитных.  [c.247]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра-трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]

Рис. 18. Диаграммы длительной прочности стали XI8H9T при различных температурах а — после закалки с 1050 — 1100° С на воздухе с выдержкой 30 мин] б-после закалки при той же температуре и старения при 700° С в течение 20 ч в — изменение удлинения образцов после испытания на длительную прочность в зависимости от длительности времени до разрушения

Перераспределение напряжений в дисках из хромомолибденовой стали в процессе ползучести, кривая пределов длительной прочности и зависимость наибольших растягивающих напряжений от времени показаны на рис. 45. Экспериментальные точки, соответствующие разрушению диска, лежат в области пёресечения этих кривых [13].  [c.214]

Таким образом, во избежание получения при экстраполяции завышенных значений од.п необходимо 1в пределах времени эксперимента получить перегиб прямой 1й(т-1дв. При относительно низких температурах для каждой данной стали межкристаллит-ное разрушение, даже в процессе весьма длительных испытаний, может не выявиться. В этом случае ведут экстраполяцию прямой ]g т-1д9 и затем корректируют результаты. Для условий межкристаллитного характера разрушения предел длительной прочности в зависимости от температуры может быть определен при помощи полученного Станюковичем эмпирического уравнения  [c.16]

Рассмотрим влияние на длительную прочность концентрации напряжений. Экспериментальные исследования показывают, что концентрация напряжений в условиях ползучести может вызвать как снижение, так и повышение длительной прочности в зависимости от материала образцов. На рис. 11.25 представлены приведенные в работах [1, 2] графики зависимости предела длительной прочности от времени для гладких, образцов и образцов с концентратором напряжений, выполненных из сталей двух марок. Концентратором напряжений была глубокая выточка — несколько изменённый по рекомендации Г. В. Ужика круговой гиперболический глубокий надрез Нейбера. Как следует из этих графиков, для более хрупкой стали ЭИ415 концентрация напряжений снижает длительную прочность, а для сплава ХН70ВМЮТ с более высоким уровнем пластических свойств концентрация напряжений повышает длительную проч-  [c.260]

Объяснение различного влияния концентрации напряжений на длительную прочность в зависимости от материала образцов можно дать на основе анализа напряженного состояния в окрестности концентратора в условиях ползучести [2]. На рис. 11.26 изображен примерный вид эпюр осевых о , окружных 0( и радиальных напряжений в наименьшем поперечном сечении образца. Напряженное состояние точек в окрестности концентратора — трехосное растяжение. У материалов с низкими пластическими свойствами (например, сталь ЭИ415) эпюры осевых и окружных напряжений имеют резкий подъем от средней части к периферии. Пики напряжений с течением времени сохраняются, что приводит к снижению прочности надрезанных образцов по сравнению с гладкими.- У материалов с более высоким уровнем пластических свойств пики напряжений меньше и с течением времени они. уменьшаются. Трехосное растяжение в окрестности надреза затрудняет развитие деформаций ползучести и поэтому длительная прочность образцов с концентратором может быть выше, чем гладких.  [c.261]

Предел длительной прочности за 200 ч стали 30Х2Н2ВФА, закаленной с 900° С и отпущенной при 640° С, в зависимости от температуры испытания имеет следующие значения o qq=980 МПа 02Ш = 900 МПа =500 МПа =270 МПа [101].  [c.253]

Из (5.27) видно, что No сильно зависит от длительной пластичности металла б. Длительная пластичность сталей определяется в первом приближении по результатам испытаний на длительную прочность (где обычно приводится б в момент разрушения) путем аппроксимации экспоненццального выражения в зависимости «от времени  [c.238]

Следует учитывать, что превыщение расчетной температуры 5 °С уменьщает абсолютную долговечность аустенитных сталей на 25-30%, а феррито-перлитных — на 35-45%. Повышение температуры на 15 °С (с 540 до 555 °С) приводит к снижению длительной прочности на 25-35% в зависимости от марки стали (рис.5.2).  [c.181]

Практически все директивные документы предусматривают контроль качества узлов и деталей основного котлотурбинного оборудования тепловых электростанций в зависимости от срока их эксплуатации. Основополагающей является зависимость между параметрами (температура и напряжение) оборудования и продолжительностью его эксплуатации. При расчетах ресурса высокотемпературных элементов оборудования снижение свойств металла в процессе длительной эксплуатации обеспечивается снижением допустимого напряжения, зависящего от величины длительной прочности металла. В табл.5.3 приведено снижение этого напряжения от длительности эксплуатации для элементов оборудования из стали 12X1МФ.  [c.197]

Параллельность линий зависимости д = /(т) и горячей длительной твердости в длительную прочность. Значение коэффициента К для стали 12X1МФ графически показано на рис.5.8. С достаточной для практики точностью предел длительной прочности определяется по формуле  [c.198]

Кроме изложенных выше данных, полученных на аустенитной нержавеющей стали Х18Н10Т при 650° С, в Институте машиноведения выполнена экспериментальная программа в широком диапазоне температур (500-700° С) на стали Х18Н9 того же класса, но с лучшими технологическими свойствами. Проведены испытания на ползучесть, длительную прочность и пластичность, длительное малоцикловое нагружение при жестком и мягком режимах с выдержками (1, 5, 50 и 500 мин). Обработка полученных данных в форме критериальных зависимостей (1.2.8), (1.2.9) подтвердила возможность деформационно-кинетического подхода к оценке  [c.28]

Обработка экспериментальных данных по сталям Х18Н10Т, Х18Н9Т и Х18Н9 показывает возможность описывать с достаточной точностью соответствующие кривые в параметрической форме. На рис. 1.2.7 и 1.2.8 приведены характеристики длительной прочности и пластичности сталей в зависимости от параметра [277] P=T + gt), (1.2.11)  [c.30]

Хотя кривые длительной прочности сталей Х18Н10Т, Х18Н9Т и Х18Н9 имеют перелом, связанный с переходом от внут-ризеренного к межзеренному характеру разрушения [17, 165, 167, 201], использование постоянных значений параметрических коэффициентов во всем интервале времен дает вполне удовлетворительные результаты и не требуется подбор различных величин коэффициентов в зависимости от типа разрушения [25].  [c.30]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]

На рис. 1 и 2 показаны сводные графики изменения значений предела ползучести при скорости ползучести 1% за 100 ООО ч и предела длительной прочности за 100 ООО ч в зависимости от температуры. Для сравнения на рис, 2 нанесены значения предела длительной прочности наиболее распространенной хромоникелевой стали Х18Н9Т.  [c.91]

Длительная прочность стали ХТ1Л-Б в зависимости от температуры отпуска  [c.204]

Если опыт на ползучесть до разрушения ставится в условиях 0 = onst, то кривые длительной прочности (статической усталости), построенные в полулогарифмических координатах, оказываются, по крайней мере на начальных участках, линейными. Это соответствует зависимости типа (1.3), если считать силу s пропорциональной действующему напряжению ст и 7 = onst. С понижением уровня напряжения на указанных кривых может появиться перелом с переходом к более пологому участку, при еще более низких уровнях — следующий перелом и так до выхода на предел длительной прочности. На рис. 1.19 приведены примеры кривых длительной прочности жаропрочных сталей при различных температурах Т и отношениях касательного напряжения к нормальному k. Эти кривые строились по данным опытов на ползучесть до разрушения тонкостенных трубчатых образцов, подвергавшихся осевому растяжению и закручиванию [59, 62] при постоянных значениях истинного нормального и истинного касательного напряжения.  [c.28]

Справочник машиностроителя Том 3 (1951) — [ c.0 ]

Виды термической обработки стали

Чтобы придать металлам необходимые характеристики, прибегают к термической обработке. Завод металлоконструкций ЧЗМК выполняет закалку и отжиг стали и цветных сплавов.

Назначение термической обработки

Поскольку металлические конструкции и изделия подвергают разнообразным нагрузкам и испытаниям, они должны быть прочными, износостойкими, сопротивляться коррозии и другим разрушительным факторам. Чтобы повысить их стойкость, придать другие необходимые свойства, прибегают к термической обработке, которая меняет физико-механические характеристики сплавов. Иногда это промежуточный этап на стадии производства металлической продукции, иногда — конечный.

В процессе происходят важнейшие изменения в структуре металла. В зависимости от выбранного вида термообработки, будет отличаться и результат. В металлообрабатывающей промышленности с помощью таких технологий создают сплавы с уникальными характеристиками. Если назначение термической обработки — повысить податливость, пластичность, после нее металл будет легче резать, придавать ему желаемую форму.

Но некоторые операции увеличивают такие характеристики, как твердость, циклическая прочность. Кроме того, при помощи термообработки удается устранить дефекты, которые вызваны ошибками или просчетами на предыдущих производственных этапах.

Преимущества термообработки металлов

При грамотно выбранном режиме и продолжительности процедур удается добиться заданных характеристик. Термическую обработку ценят за следующие достоинства:

  • увеличивается стойкость металла к износу;
  • за счет улучшения технических показателей возрастает срок службы металлоконструкций и изделий;
  • уменьшается количество деталей, непригодных к использованию;
  • благодаря повышению прочности, долговечности и износостойкости сокращаются финансовые издержки.

Чтобы стали обрели желаемые свойства, необходимо специальное оборудование. Это высокотехнологичные печи, в которых за счет высоких температур добиваются сильного нагрева, вызывающего изменения в структуре металла. Однако для качественной термообработки важна регулировка мощности, других настроек. Поскольку каждому металлу требуется свой температурный режим. Также его подбирают под цели термической обработки — в зависимости от того, какие именно свойства нужно придать стали или цветному сплаву.

Принцип термической обработки

Хотя процессы отличаются температурным режимом, длительностью и другими тонкостями, в целом процедура протекает по одному и тому же принципу. Термическую обработку стали выполняют в следующей последовательности:

  1. Нагрев.
  2. Выдержка.
  3. Охлаждение.

Для первого этапа крайне важно точно подобрать температуру и выполнить нагрев до указанного предела. Температурный режим предопределяется тем, предстоит ли работать со сталью или с другими сплавами, какие именно свойства следует придать металлу.

Также имеет значение продолжительность выдержки. Сплавы претерпевают желаемые изменения в структуре, только когда температура держится в конкретном диапазоне в течение определенного времени.

Скорость охлаждения — не менее значимая константа. В некоторых случаях в работе со сталью при термообработке ее оставляют в печи, где она очень долго остывает вместе с оборудованием. Но иногда требуется более быстрое понижение температуры металла, чтобы в структуре не произошли нежелательные изменения. И тогда после термической обработки заготовку выставляют остывать на воздухе.

Виды термообработки стали

Имея общий алгоритм действий, предприятия выполняют термическую обработку разными способами. Располагая всего тремя инструментами — нагрев, выдержка и охлаждение, удается решать широчайший круг задач. Если одни виды термической обработки стали предназначены для увеличения ее прочности, то другие повышают пластичность и текучесть. Поэтому важен профессионализм, четкое понимание процессов, протекающих в структуре.

Отжиг

К одним из самых востребованных видов термообработки относят отжиг, который выполняют для понижения твердости и снятия внутреннего напряжения. Зачастую он необходим после горячей обработки стали давлением. Например, такой термической обработке подвергают заготовки после ковки, прокатки и штамповки. Иногда к отжигу прибегают вслед за сваркой. Он же используется, если на предыдущем этапе работы со сталью допущены ошибки и возникли дефекты.

Суть такой термической обработки заключается в нагреве выше критической точки, последующей выдержке и охлаждении. Благодаря этому структура обретает равновесность, впоследствии со сталью проще работать способом резания.

Закалка

Эту термическую обработку выполняют, чтобы увеличить твердость сплава. Если говорить о процессах, которые происходят со сталью, то в ее структуре вместо перлита образовывается мартенсит, проходя через стадию аустенита.

Воздействуя при помощи высоких температур на металл, сначала добиваются аустенитного превращения. Чтобы избежать промежуточную структуру, заготовку помещают в масло. Там происходит быстрое охлаждение стали до мартенситных превращений. Однако далее снижение температур должно замедлиться. Иначе распад аустенита будет неполным и не удастся при помощи термообработки придать стали желаемую твердость.

Отпуск

Такую термическую обработку осуществляют для повышения пластичности одновременно со снижением хрупкости. При этом удается сохранить высокую прочность стали. Отпуск делят на три вида, в зависимости от уровня нагрева металла. Он бывает:

  • низкотемпературным;
  • среднетемпературным;
  • высокотемпературным.

В первом случае термическую обработку выполняют, доведя сплав до 250 градусов. Преимущественно данный способ применим для закаленной стали. Также низкотемпературному отпуску подвергают инструменты из углеродистых и низколегированных металлов.

Второй вид предполагает термическую обработку стали с нагревом до 350-500 градусов. Он обеспечивает повышение упругости и выносливости. Улучшается еще одно ценное свойство — релаксационная стойкость.

Среднетемпературный отпуск протекает с охлаждением в два этапа — сначала в воде, а затем на воздухе. Благодаря этому стали придают сжимающие остаточные напряжения, что улучшает выносливость.

Высокотемпературный отпуск — это нагрев до 500-680 градусов. Благодаря данной термической обработке удается совместить высокую прочность с пластичностью и вязкостью. Подобные свойства особенно ценятся при производстве деталей, на которые будут выпадать повышенные ударные нагрузки. Например, это валы и зубчатые колеса.

Эти виды термообработки приводят к распаду мартенсита. Также в процессе происходит полигонизация и рекристаллизация.

Химико-термическая обработка

Суть подобных мероприятий заключается в нагреве и выдержке в химически активных средах. Посредством такой термообработки удается поменять химический состав, а не только структуру и свойства стали.

Процедура показана по отношению к заготовкам, в которых должна сохраняться твердость поверхности и вязкость сердцевины. Также удается повысить коррозионную стойкость и сопротивление усталости.

Химико-термическую обработку осуществляют, применяя жидкие, твердые и газообразные среды. В зависимости от того, какими веществами насыщается металл, выделяют следующие виды процедур:

  • цементация;
  • азотирование;
  • цианирование и пр.

Если термообработку совмещают с нанесением углерода, как в первом случае, сталям придают высокую прочность и сопротивление истиранию. Процесс происходит с погружением в порошкообразную смесь, в соляные ванны или в печи с цементирующими газами.

Суть азотирования заключается в насыщении стали азотом. Термообработку выполняют в печи, меняя длительность процесса, в зависимости от нужной глубины проникновения химического вещества.

Цианирование предполагает насыщение углеродом и азотом одновременно. Благодаря этому сталям придают высокую твердость, стойкость к истиранию и к коррозии. Такую термическую обработку выполняют, используя цианистые соли, азотирующие газы, порошки и пасты.

Термомеханическая обработка

Данная методика сравнительно новая. Она позволяет сохранить пластичность, выполнить пластическую деформацию и упрочнить структуру.

Металл доводят до аустетинтного состояния. При быстром охлаждении начинается формирование мартенсита. В это же время выполняют наклеп аустенита — посредством прокатки, штамповки либо ковки. За счет этого и происходит улучшение физико-механических свойств стали.

В зависимости от того, какая используется температура, термомеханическая обработка бывает:

  • высокотемпературной;
  • низкотемпературной.

В первом случае превышают высшую критическую точку, приступают к пластической деформации и завершают закалкой. Во втором — сначала происходит нагрев, затем охлаждение до температуры, когда сохраняется аустенит, но еще не начинается рекристаллизация. На этой стадии осуществляют пластическую деформацию.

Криогенная обработка

Чтобы поменять свойства металлов, используют не только высокие, но и низкие температуры. Как и при термообработке, удается снять остаточные напряжения и повысить износостойкость деталей. Увеличивается твердость заготовок, их прочность. В процессе остаточный аустенит трансформируется в мартенсит. Данные мероприятия выполняют в криогенном процессоре.

Применяемое оборудование

В термических цехах встречаются разнообразные установки. Поскольку и назначение термической обработки бывает различным, возникает потребность в нескольких видах печей:

  • шахтные;
  • камерные;
  • вакуумные;
  • с выдвижным подом.

Первые называют универсальными. В них возможно выполнять термообработку разными способами. В шахтных печах размещаются заготовки любого размера. Сюда отправляют детали для нагрева перед закалкой, для отжига и отпуска, для цементации. Более того, в них работают не только со сталями, но и с цветными металлами.

В камерных печах обрабатывают преимущественно заготовки среднего и мелкого размера. Их устанавливают на различных предприятиях и в качестве самостоятельных единиц, и в составе автоматизированного комплекса.

В вакуумных печах, помимо термической обработки, можно выполнять пайку, спекание материалов. Оборудование ценят за то, что оно в точности придерживается заданных технологических параметров. Температура не откланяется от нужного предела больше чем на 5 градусов. Такие печи используются для термической обработки конструкционной стали. В них проходят разнообразные процедуры титановые сплавы, тугоплавкие металлы.

Печи с выдвижным поддоном особенно удобны, когда необходимо обработать очень крупную деталь либо узел. Для загрузки и выгрузки стали обычно используют специальные краны и кран-балки. Однако оборудование этого типа имеет существенные недостатки. Во-первых, оно громоздкое, поэтому не на каждом предприятии найдется пространство для его установки. Во-вторых, из-за специфики конструкции высоки теплопотери.

В основном печи с выдвижным поддоном применимы для отжига сварных конструкций. В них доводят заготовки крупных габаритов до аустенитного состояния. Еще один способ применения — подготовка для ковки.

Особенности термообработки цветных сплавов

Цветные металлы требуют особого подхода к обработке, в отличие от работы со сталями. Индивидуальный подход обусловлен особенностями строения кристаллической решетки. Режим и характер воздействия подбирают также с учетом теплопроводности, химической активности. Но многие процессы с цветными металлами протекают в тех же печах, где обрабатывают стали.

Завод металлоконструкций ЧЗМК подвергает термической обработке различные стали, цветные металлы. Для этого предприятие оснащено разнообразным современным оборудованием. Высокая квалификация и профессионализм специалистов служат залогом превосходного результата.

Литература:
  1. Скориченко, «Доисторическая M.» (СПб., 1996); его же, «Гигиена в доисторические времена» (СПб., 1996).
  2. Daremberg, «Histoire des sciences médicales» (П., 1966).
  3. Haeser, «Handbuch der Gesch. d. Medicin».
  4. https://thermalinfo.ru/svojstva-materialov/metally-i-splavy/temperaturnyj-koeffitsient-linejnogo-rasshireniya-stali.
  5. https://mash-xxl.info/info/213609/.
  6. https://chezmk.ru/stati/vidy-termicheskoy-obrabotki-stali/.
  7. Baas, «Geschichte d. Medicin».
  8. Debjit B., Rishab B., Darsh G., Parshuram R., Sampath K. P. K. Gastroretentive drug delivery systems- a novel approaches of control drug delivery systems. Research Journal of Science and Technology;10(2): 145–156. DOI: 10.5958/2349-2988.2018.00022.0.
  9. Moustafine R. I., Bukhovets A. V., Sitenkov A. Y., Kemenova V. A., Rombaut P., Van den Mooter G. Eudragit® E PO as a complementary material for designing oral drug delivery systems with controlled release properties: comparative evaluation of new interpolyelectrolyte complexes with countercharged Eudragit® L 100 copolymers. Molecular Pharmaceutics. 2013; 10(7): 2630–2641. DOI: 10.1021/mp4000635.
  10. Мирский, «Медицина России X—XX веков» (Москва, РОССПЭН, 2005, 632 с.).
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector