Закон Гука [в понятной форме]

Обычно при изучении закон Гука не вызывает особых сложностей. Запомнить, что деформация в упругом теле пропорциональна приложенной к нему силе, совсем не сложно.

Чаще всего, этого знания вполне достаточно для школьного курса, чтобы забыть про Гука навсегда :)… Чтобы он лучше запомнился, глянем на портрет.

Однако, если вы изучаете физику по углубленной программе или если ваш преподаватель хочет добиться демонстрации понимания этого закона на более высоком уровне, то сказанного явно недостаточно. Кроме того, при поступлении в технический институт, знаний этих тоже мало. Ведь на законе Гука держится великий и ужасный сопромат! Да и при изучении механики — это один из самых важных законов.

Давайте изложим основные постулаты Гука в простой и понятной читателю форме, ну а если вопросы останутся — пишем их в комментариях или в личку.

Введение и основные понятия

Наверняка вы в детстве играли с такой штукой, которая называется лук со стрелами. Принцип работы этого устройства очень прост. Есть согнутая палка, чаще всего из ивы, и есть тетива, которая связывает концы палки. Когда мы натягиваем тетиву стрелой, то сила упругости палки заставляет её возвращаться к прежнему состоянию и передавать энергию стреле.

Как вы догадываетесь, ключевое слово тут — сила упругости. Это такая сила, которая возникает в теле при попытке это тело согнуть или изменить его форму, то есть деформировать. Кстати, про силу полезно прочитать вот это. Обусловлена она внутренним взаимодействием частичек.

И тут тоже появилось новое слово — деформация. Думаю, пояснять что это такое, не нужно.

А вот сказать, что деформация бывает обратимая (упругая) и необратимая, важно. Ведь закон Гука работает в случаях существования упругой деформации.

Упругая деформация — это такая деформация, после которой тело возвращается к своим первоначальным геометрическим характеристикам, после снятия внешнего воздействия.

Простейшие виды деформации — это растяжение и сжатие. Сразу вспоминаем пружину. Ну и в учебнике физики вы как раз-таки встретите закон Гука, который раскрывается на примере пружины.

Формулировка закона Гука

Формулируется закон так:

Деформация, возникающая в упругом теле, пропорциональна приложенной к этому телу силе.

Если записывать его в виде формулы, то имеем следующее:

F = -kx ,

где F — сила упругости в теле, k — коэффициент упругости или жесткости, x — линейное изменение размеров тела.

Почему тут минус? Да его можно и не писать, если понимать логику. Вспоминаем, что сила есть вектор. Так как сила, возникающая в теле, противонаправлена силе приложенной, то формула записывается с минусом.

Иногда вместо k или x используют другие обозначения, но смысл от этого не меняется.

Разбираемся с новыми буквами

У нас появилась сила упругости в теле. Именно она в формуле — это F. Вспоминаем, что по третьему закону Ньютона (обязательно читаем), она равна силе или векторной сумме сил, воздействующей на тело. Мы считаем именно эту силу. Поэтому, если, скажем, предстоит решить задачу, где книга лежит на столе, а стол гнется, то мы считаем, что сила упругости в столе, равна нашему любимому m*g, так как книга притягивается к полу и вызывает изгиб стола.

k — это жесткость тела. Зависит она от материала и характеристик тела. Очевидно, что деревянная доска и железная труба будут иметь разные жесткости.

Стоит отметить, что это величина расчётная, но в начале изучения вы будете брать её из табличек и считать константой. А вот дальше нужно будет вспомнить/изучить, такую штуку, как модуль упругости первого рода или модуль Юнга. Это уже основы сопротивления материалов и начнется «О Боже, профессор нинада!»)

х — это линейное удлинение. Считается очень просто. Сколько стало минус сколько было :). В сложных случаях считается тоже посложнее, но нужны просто знания геометрии.

Новые важные понятия и обобщенный закон Гука

Про обобщенный закон Гука следует написать отдельную статью. Здесь же отмечу, что искушенный читатель наверняка заметил — пока речь идёт только об одноосном деформировании. Мы работаем с пружиной, которую можно растянуть вдоль оси икс или сжать вдоль оси икс. А что, если пружина будет растягиваться и сгибаться одновременно…

Реальные тела обычно деформируются во все стороны. В дело вступают сразу три направления.

В этом случае нужно использовать обобщенный закон Гука. Используются так называемые тензоры. Это большая тема, а тут отметим, что если вас вдруг спросили, а какие ограничения есть у стандартного закона Гука, то обязательно не забудьте сказать, что деформация должна происходить вдоль одной оси.

Ещё при разговоре об ограничениях выполнения закона стоит отметить про предел пропорциональности. Это максимальное механическое нагружение, до которого выполняется закон Гука. Смотрим на график. По оси Ыгрик у нас отложено механическое напряжение (читай как сила для упрощения), а по оси Ыкс — изменение размеров. Пока у нас есть линейная зависимость, отмеченная красной прямой линией, закон Гука будет выполняться.

Все тела ведут себя по разному и при достижении точки А одни тела развалятся/сломаются, а другие необратимо удлинятся/сожмутся. В конкретном примере тело расслюнявило, но оно не сломалось. Связь между силой и деформацией стала нелинейной.

Закон Гука выполняется только при малых деформациях и далеко не для всех материалов! Так, для многих полимеров закон Гука не будет выполняться. Выполняется он только, напомним, в линейных системах.

Как же описывать связь силы упругости и деформации в нелинейных системах, т.е. когда деформация не мала. Или что делать, когда закон Гука неприменим. Очень хорошо, что вы об этом задумались! Но это большая и сложная тема. Всё опять сводится к закону Гука в обобщенной форме и условно принимается, что деформация мала. Примерно так :)…

Но вообще, при больших деформациях следует использовать иные способа расчёта.

ISopromat.ru

Законом Гука называют базовую зависимость в механике, устанавливающую взаимосвязь между усилиями и соответствующими им упругими деформациями.

Закон был открыт в 1660 году английским ученым Робертом Гуком.

Проведя серию экспериментов с растяжением и сжатием пружин, Гук заметил, что изменение их длины прямо пропорционально растягивающей (сжимающей) их силе.

Растяжение пружин

Свои наблюдения он оформил в виде закона: «Какова сила, таково и удлинение».

Удлинения пропорциональны силе

Современная формулировка закона существенно отличается от оригинала и зависит от дисциплины, в которой рассматривается зависимость деформаций от усилий.

Подробнее про закон Гука смотрите в нашем видео:

Закон Гука в физике

Силы упругого сопротивления

В современных учебниках физики Закон Гука имеет вид:

и формулируется следующим образом:

«При малых деформациях сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения его частиц»

Коэффициент k характеризует жесткость образца и зависит от его размеров и материала.

Растяжение стержня

Например, для стержней, работающих на растяжение или сжатие, он может быть рассчитан по формуле:

где:

E — Модуль упругости I рода (модуль Юнга);

A — Площадь поперечного сечения бруса;

l — Длина стержня.

Знак минус означает, что силы упругого сопротивления направлены обратно растягивающей силе.

Закон Гука в сопромате

В технической механике и сопротивлении материалов в частности закон Гука гласит: «До определенного момента, называемого пределом пропорциональности, упругие деформации прямо пропорциональны напряжениям».

Здесь:

σ — Нормальные напряжения в сечении;

ε — Относительные продольные деформации.

Рассмотрим преобразование физической формы закона к его механическому виду.

Подставим вместо коэффициента k его выражение

Отношение продольной силы F к площади поперечного сечения A в левой части дает нормальные напряжения в сечении

Отношение абсолютных деформаций к начальной длине образца — это относительное изменение его длины

В таком виде закон Гука используется в сопромате и технической механике.

Закон выполняется только для напряжений не превышающих предела пропорциональности.

Область действия закона Гука

При растяжении и сжатии

При растяжении и сжатии закон Гука можно получить, вернув в его канонический вид геометрические параметры стержня (длину и площадь поперечного сечения), и записав получившееся выражение относительно линейной деформации:

Здесь

Δl- Абсолютная деформация стержня;

F — Продольная сила;

l — Длина стержня до нагружения;

E — Модуль продольной упругости материала;

A — Площадь поперечного сечения стержня.

При изгибе

При изгибе закон устанавливает зависимость между кривизной продольной оси и величиной изгибающего момента в соответствующем сечении балки.

где:

ρ — Радиус кривизны продольной оси балки в данном сечении;

M — Величина соответствующего внутреннего изгибающего момента;

E — Модуль Юнга;

Ix — Осевой момент инерции поперечного сечения балки.

Обобщенный закон Гука

Общий случай нагружения

Для общего случая нагружения изотропных материалов, когда напряженное состояние отличается от линейного (одноосного) применяется закон Гука в обобщённом виде.

Обобщенный закон Гука

ε — Относительные деформации вдоль соответствующих осей;

ν — Коэффициент Пуассона;

σ — Нормальные напряжения по соответствующим площадкам элемента.

Потому что деформации в поперечных направлениях тоже влияют на изменение продольных размеров.

Для чистого сдвига

γ — Угловое перемещение соответствующей площадки элемента;

τ — Касательные напряжения;

G — Модуль упругости II рода (модуль сдвига).

Испытание на растяжение >>

Диаграмма напряжений >>

Техническая механика

Сопротивление материалов

Деформации при растяжении и сжатии

Продольные деформации при растяжении и сжатии

Характер деформаций, которым подвергается прямой брус при растяжении или сжатии мы определили, проведя опыт с резиновым брусом, на котором была нанесена сетка линий.

Теперь представим себе брус постоянного сечения имеющий длину l, один из концов которого защемлен, а к свободному концу приложена растягивающая сила F. Под действием этой силы брус удлинится на некоторую величину Δl, которую назовем абсолютным удлинением бруса.

Отношение абсолютного удлинения Δl к первоначальной длине бруса l назовем относительным удлинением и обозначим ε:

ε = Δl / l

Относительное удлинение — величина безразмерная, иногда его выражают в процентах.

Итак, деформация бруса при растяжении и сжатии характеризуется абсолютным и относительным удлинением или укорочением.

***

Закон Гука при растяжении и сжатии

Напряжения и деформации при растяжении и сжатии связаны между собой линейной зависимостью, которая называется законом Гука, по имени английского физика Р. Гука (1653-1703 г.г.), установившего этот закон.

Сформулировать закон Гука можно так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Математически эта зависимость записывается так:

σ = E ε.

Здесь Е — коэффициент пропорциональности, который характеризует жесткость материала бруса, т. е. его способность сопротивляться деформации; его называют модулем продольной упругости, или модулем упругости первого рода.

Модуль упругости, как и напряжение, выражаются в паскалях (Па).

Значения Е для различных материалов устанавливаются экспериментально-опытным путем, и их величину можно найти в соответствующих справочниках.

Так, для стали Е = (1,96.…2,16) х 105 МПа, для меди Е = (1,00…1,30) х 105 МПа и т. д.

Следует оговориться, что закон Гука справедлив лишь в определенных пределах нагружения.

Если в формулу закона Гука подставить полученные ранее значения относительного удлинения и напряжения: ε = Δl / l , σ = N / А, то можно получить следующую зависимость:

Δl = Nl / (EА).

Произведение модуля упругости на площадь сечения Е×А, стоящее в знаменателе, называют жесткостью сечения при растяжении и сжатии; оно характеризует одновременно и физико-механические свойства материала бруса и геометрические размеры поперечного сечения этого бруса.

Приведенную выше формулу можно читать так: абсолютное удлинение или укорочение бруса прямо пропорционально продольной силе и длине бруса, и обратно пропорционально жесткости сечения бруса.

Выражение ЕА / l называют жесткостью бруса при растяжении и сжатии.

Приведенные выше формулы закона Гука справедливы лишь для брусьев и их участков, имеющих постоянное поперечное сечение, изготовленных из одного материала и при постоянной силе. Для бруса, имеющего несколько участков, отличающихся материалом, размерами сечения, продольной силой, изменение длины всего бруса определяется, как алгебраическая сумма удлинений или укорочений отдельных участков:

Δl = Σ (Δli)

***

Поперечные деформации при растяжении и сжатии

Описанный ранее опыт с резиновым брусом, на котором нанесена сетка линий, показал, что при растяжении поперечные размеры бруса уменьшаются, а при сжатии — увеличиваются, т. е. брус становится либо тоньше, либо толще. Это явление характерно для брусьев, изготовленных из всех материалов.

Опытным путем установлено, что при одноосном растяжении или сжатии отношение относительных поперечной и продольной деформаций для данного материала — величина постоянная.

Впервые на эту зависимость указал французский ученый С. Пуассон (1781-1840 г.г.) и математически она записывается так:

|ε1| = ν |ε|,

где ν — коэффициент поперечной деформации, называемый коэффициентом Пуассона.

Коэффициент Пуассона является безразмерной величиной, и характеризует упругие свойства материала. При растяжении и сжатии этот коэффициент принимается одинаковым.

Значения коэффициента Пуассона для разных материалов установлены опытным путем и их величины можно найти в соответствующих справочниках.

***

Потенциальная энергия деформации при растяжении

При статическом (медленном) растяжении образца растягивающая сила F возрастает от нуля до какого-то значения, удлиняет образец на величину Δl и при этом совершает работу W.

Эта работа аккумулируется в деформируемом образце в виде потенциальной энергии деформации U, причем, пренебрегая незначительными потерями энергии (например, тепловыми), можно считать, что W = U.

Путем изучения диаграмм растяжения образцов, установлено, что потенциальная энергия упругой деформации стержня длиной l постоянного поперечного сечения А при одинаковой во всех сечениях продольной силе N = F будет равна:

U = W = F Δl / 2 = N2 l / (2E А)

Сопротивление материалов оперирует, также, таким понятием, как удельная потенциальная энергия деформации, которая подсчитывается, как потенциальная энергия, приходящаяся на единицу объема бруса.

При одновременном действии растягивающих и сжимающих нагрузок или ступенчатом изменении размеров поперечного сечения бруса, его разбивают на однородные участки и для каждого подсчитывают потенциальную энергию деформации. Потенциальную энергию деформации всего бруса определяют, как сумму потенциальных энергий отдельных участков.

Анализируя формулу потенциальной энергии деформации можно сделать вывод, что эта величина всегда положительная, поскольку в ее выражения входят квадраты линейных и силовых величин. По этой причине при вычислении потенциальной энергии деформации нельзя применять принцип независимости действия сил (поскольку квадрат суммы не равен сумме квадратов слагаемых).

Единицей измерения потенциальной энергии деформации, как и работы, является джоуль (Дж).

***

Материалы раздела «Растяжение и сжатие»:

  • Основные понятия о деформации растяжения и сжатия.
  • Расчеты на прочность при растяжении и сжатии. Статически неопределимые задачи.

Смятие

Правильные ответы на вопросы Теста № 5

№ вопроса

1

2

3

4

5

6

7

8

9

10

Правильный вариант ответа

3

3

1

2

1

3

2

2

1

1

Закон Гука — определение, формула и примеры применения

Закон гука

Для проектирования таких механизмов требуется базовое понимание того, что из себя представляют упругость, кручение и сила, поэтому инженерам необходимо знать определение и формулу закона Гука.

Свойства пружины

Пружина — это объект, который может деформироваться под воздействием силы, а после того как сила будет устранена, вернётся к своей первоначальной форме. Пружины бывают самых разных форм и являются неотъемлемой частью практически всех умеренно сложных механических устройств: от шариковых ручек до двигателей гоночных автомобилей.

В самой форме спиральной пружины нет никаких особенностей. «Пружинность», или, точнее, эластичность, является фундаментальным свойством проволоки, из которой изготовлена ​​пружина. Длинная прямая металлическая проволока также обладает способностью «отскакивать» после растяжения или скручивания.

Сила упругости закон гука

Смотка проволоки в пружину позволяет использовать свойства длинного куска в небольшом пространстве. Это гораздо удобнее для сборки механических устройств.

Реакция металлической проволоки на растяжение (осевая нагрузка) и скручивание (кручение) определяется различными физическими свойствами, и в конструкции конкретной пружины один вид деформации может преобладать над другим.

Кроме того, упругие свойства металлов сильно зависят от микроструктуры их зёрен. Это может быть изменено как напряжением, так и контролируемым процессом нагрева и охлаждения, известным как отжиг.

Если металлическая проволока была сформирована из прямого сечения в катушку, то, вероятно, её необходимо будет повторно отжечь для восстановления первоначальных упругих свойств.

Принципы деформации

Когда сила воздействует на материал, он растягивается или сжимается в ответ. В механике сила, приложенная на единицу площади, является тем, что называется напряжением. Степень растяжения и сжатия, возникающая, когда материал реагирует на напряжение, называется деформацией. Напряжение измеряется отношением разницы в длине к исходной длине в направлении напряжения.

Каждый материал по-разному реагирует на стресс, и детали этой реакции важны для инженеров, выбирающих материалы для своих конструкций и машин, которые должны вести себя предсказуемо при ожидаемых напряжениях.

Закон гука определение и формула

Для большинства материалов нагрузка, испытываемая при приложении небольшого напряжения, зависит от плотности химических связей. То же самое относится к жёсткости материала, которая напрямую связана с его химической структурой.

Происходящее при снятии напряжения зависит от того, насколько далеко перемещены атомы.

В целом существует два типа деформации:

  1. Упругая. После снятия напряжения материал возвращается к размеру, который был до приложения нагрузки. Деформация обратима, непостоянна.
  2. Пластическая. Напряжение настолько велико, что при снятии нагрузки материал не возвращается к своему предыдущему размеру. Минимальное значение напряжения, вызывающего пластическую деформацию, известно как предел упругости материала.

Любая пружина должна быть спроектирована точно таким образом, чтобы она испытывала только упругую деформацию при установке в машину при нормальной эксплуатации.

Суть закона

Закон назван в честь британского физика XVII века Роберта Гука, который впервые сформулировал его в 1676 году в виде анаграммы на латинском.

Закон гука определение

Он опубликовал её решение в 1678 году, утверждая, что открыл закон уже в 1660 году.

При изучении пружин и свойств их упругости, имеющих электромагнитную природу, физик отметил, что кривая зависимости напряжения от деформации для многих материалов имеет линейную область.

Вот как формулируется закон Гука: сила упругости, необходимая для растяжения упругого объекта, такого как металлическая пружина, равна или прямо пропорциональна удлинению пружины.

Эта формулировка математически записывается как F = -kx, где обозначения расшифровываются следующим образом:

  1. X — это смещение конца пружины от её положения равновесия.
  2. F — восстанавливающая сила, прилагаемая пружиной к этому концу.
  3. K — константа пропорциональности, известная как пружинная постоянная, которая обычно измеряется в N/m (ньютон метр).

Несколько пружин могут воздействовать на одну и ту же точку. В таком случае закон всё ещё может применяться. Как и с любым другим набором сил, силы многих пружин могут быть объединены в одну.

Когда действует закон Гука, поведение линейно. Если оно показано на графике или рисунке, линия, изображающая силу как функцию смещения, должна показывать прямое изменение. В правой части уравнения есть отрицательный знак, потому что восстанавливающая сила, создаваемая пружиной, находится в направлении, противоположном силе, вызвавшей смещение.

Закон гука при растяжении и сжатии

Всегда важно убедиться, что направление восстанавливающей силы задаётся последовательно при приближении к механическим задачам, связанным с упругостью. Для простых задач часто можно интерпретировать расширение X как одномерный вектор, в этом случае результирующая сила также будет одномерным вектором, а отрицательный знак в законе Гука даст правильное направление силы.

Однако успешность применения принципа зависит от того, при каких условиях он выполняется. Закон Гука является лишь линейным приближением первого порядка к реальному отклику пружин (и других упругих тел) на приложенные силы и имеет границы применимости, работая только в ограниченной системе координат.

Поскольку ни один материал не может быть сжат сильнее определённого минимального размера (или растянут за пределы максимального размера) без некоторой постоянной деформации или изменения состояния, он применяется только до тех пор, пока задействовано ограниченное количество силы или деформации. Фактически многие материалы заметно отклонятся от закона Гука задолго до того, как будут достигнуты эти пределы упругости.

 при каких условиях выполняется закон гука

С другой стороны, этот закон является точным приближением для большинства твёрдых тел, пока силы деформации достаточно слабы.

По этой причине он широко используется во всех областях науки (например, в сопромате) и техники, а ещё является основой многих дисциплин, таких как сейсмология, молекулярная механика и акустика.

Это также принцип, стоящий за пружинной шкалой, манометром и колесом баланса механических часов.

Поскольку общие напряжения и деформации могут иметь несколько независимых компонентов, «коэффициент пропорциональности» может больше не быть просто одним действительным числом, а скорее линейной картой (тензором), которая может быть представлена ​​матрицей действительных чисел.

В этом обобщённом виде закон позволяет вывести связь между деформацией и напряжением для сложных объектов, с точки зрения внутренних свойств материалов, из которых они изготовлены. Например, можно сделать вывод, что однородный стержень с равномерным поперечным сечением будет вести себя как простая пружина при растяжении, с жёсткостью K, прямо пропорциональной его площади поперечного сечения и обратно пропорциональной его длине.

Модуль Юнга

Модуль Юнга (также известный как модуль упругости) — это число, которое измеряет сопротивление материала упругой деформации. Оно названо в честь физика XVII века Томаса Юнга. Чем жёстче материал, тем выше его модуль Юнга.

 как формулируется закон гука

Это значение обычно обозначается символом E и записывается как E = σ/ε, где:

  1. σ (сигма) представляет собой одноосное напряжение, или одноосное усилие на единицу поверхности в паскалях.
  2. ε (эпсилон) является деформацией или пропорциональной деформацией (изменение длины, делённое на исходную длину).

Модуль Юнга можно определить при любом напряжении, но там, где он подчиняется закону Гука, это постоянная величина. Можно непосредственно получить постоянную пружины k из модуля материала, области A, к которой приложена сила (поскольку напряжение зависит от площади), и номинальной длины материала L.

Практическое использование

Модуль Юнга позволяет рассчитать изменение размера стержня из изотропного упругого материала при растягивающих или сжимающих нагрузках. Например, он предсказывает, насколько образец материала растягивается при растяжении или укорачивается при сжатии.

Модуль непосредственно относится к случаям одноосного напряжения, то есть растягивающего или сжимающего напряжения в одном направлении и отсутствия напряжения в других направлениях.

Он также используется, чтобы найти отклонение, которое будет появляться в статически определённом луче, когда нагрузка приложена в точке между опорами луча. Другие вычисления обычно требуют использования одного дополнительного упругого свойства, такого как модуль сдвига, модуль объёма или коэффициент Пуассона. Любые два из этих параметров достаточны для полного описания упругости в изотропном материале.

Виды материалов

Сталь, углеродное волокно и стекло среди прочих обычно считаются линейными материалами, в то время как другие материалы, такие как резина и грунты, являются нелинейными. Однако это не абсолютная классификация: если к нелинейному материалу применяется небольшое напряжение, отклик будет линейным. Например, поскольку линейная теория предполагает обратимость, было бы абсурдно использовать её для описания разрушения стального моста под большой нагрузкой.

 закон гука формулировка

Модуль не всегда одинаков во всех ориентациях материала. Большинство металлов и керамики, наряду со многими другими материалами, являются изотропными, и их механические свойства одинаковы во всех ориентациях. Тем не менее металлы и керамика могут быть обработаны определёнными примесями, чтобы сделать их структуры зерна направленными.

Эти материалы затем становятся анизотропными, и модуль Юнга будет меняться в зависимости от направления вектора силы. Анизотропия также наблюдается во многих композитах. Например, углеродное волокно имеет гораздо более высокий модуль Юнга, когда сила нагружена параллельно волокнам (вдоль зерна). Другие такие материалы включают дерево и железобетон. Инженеры могут использовать это явление при создании конструкций.

Поскольку производители пружинных весов ожидают, что их продукт будет использоваться вертикально (например, рыбаком, измеряющим массу своей добычи), шкала откалибрована для учёта массы пружины и крючка. Это даст неверный абсолютный результат, если использовать его для измерения горизонтальной силы.

Тем не менее закон Гука говорит, что существует линейная зависимость между силой и растяжением. Из-за этого всё ещё можно рассчитывать на шкалу относительных измерений при горизонтальном использовании. Некоторые пружинные весы имеют регулировочный винт, который позволяет калибровать нулевую точку, устраняя эту проблему.

Литература:
  1. Puccinotti, «Storia della medicina» (Ливорно, 1954—1959).
  2. Мустафин Р. И., Протасова А. А., Буховец А. В., Семина И.И. Исследование интерполимерных сочетаний на основе (мет)акрилатов в качестве перспективных носителей в поликомплексных системах для гастроретентивной доставки. Фармация. 2014; 5: 3–5.
  3. Мустафин Р. И., Протасова А. А., Буховец А. В., Семина И.И. Исследование интерполимерных сочетаний на основе (мет)акрилатов в качестве перспективных носителей в поликомплексных системах для гастроретентивной доставки. Фармация. 2014; 5: 3–5.
  4. https://zen.yandex.ru/media/inznan/zakon-guka-v-poniatnoi-forme-5f8c91d3a70d4515e7a2739b.
  5. https://isopromat.ru/glossary/zakon-guka.
  6. https://k-a-t.ru/tex_mex/1-sopromat_rastyajen2/.
  7. https://nauka.club/fizika/zakon-guka.html.
  8. З.С. Смирнова, Л.М. Борисова, М.П. Киселева и др. Противоопухолевая эффективность прототипа лекарственной формы соединения ЛХС-1208 для внутривенного введения // Российский биотерапевтический журнал. 2012. № 2. С. 49.
  9. Ковнер, «Очерки истории M.».
Головлева Лилия Аркадьевна/ автор статьи

Ведет прием в поликлиниках:
Поликлиника №15
Медицинский стаж: 20 лет
Ведущий врач-терапевт
Подробнее обо мне »

Понравилась статья? Поделиться с друзьями:
Наши травмы
Adblock
detector